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Software testing, particularly regression testing, is a process that is required 
when changes are made to the software or its environment to ensure that the 
software continues to perform as expected. Motivated by real industry needs, 
this study reports on the experience of transitioning from manual to 
automated regression testing in one of the mobile applications at a company 
that provides a lifestyle super app service in Indonesia. Prior to this study, 
regression testing was conducted manually, resulting in significant costs and 
inherent subjectivity. Test automation is then applied to the activities of test 
execution and test result integration as an effort to increase test productivity 
and efficiency. This study aims to find an efficient testing alternative by 
separating the flow that runs tests related to changes from the flow that runs 
all tests. Based on the analysis of the tested application, each flow has its trade-
offs. The results show that test automation can provide benefits for regression 
testing, application releases, and software engineering flow. The framework 
presented in this paper aims to serve as a guideline for other industrial 
applications with similar specifications that are also considering 
implementing test automation. 
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A. Introduction 
Software testing is a structured process designed to ensure that an application 

performs as expected. When new features are added or existing ones are modified, 
introducing new functionality, a specific type of testing known as regression testing 
is carried out to verify that these changes do not negatively impact previously 
developed and tested functionalities [1][2]. Typically, regression testing involves re-
executing all existing test cases across both modified and unmodified parts of the 
codebase [3][4]. As new functionalities are introduced, additional test cases must be 
created and executed, resulting in increased testing costs that are proportional to 
the growing complexity and size of the software. 

In practice, software testing—particularly regression testing—represents one 
of the most significant cost drivers in software development projects. Studies have 
shown that testing can consume up to 50% of the total project budget [5][6][7][8]. 
These costs encompass not only financial expenditures but also human resources, 
labor, time, and numerous other factors. One of the key reasons regression testing 
can be so costly is that it is often performed manually. In manual regression testing, 
the quality assurance (QA) team runs all test cases on the latest version of the 
software and reports any issues encountered. Over time, many of these test cases 
become repetitive and trivial, as features that haven't been changed or are unrelated 
to recent updates are still tested, even though their results remain unchanged from 
previous test cycles. Additionally, manual regression testing is inherently subjective 
and highly susceptible to human error [9][10][11]. 

One company that has encountered significant challenges with manual 
regression testing is The Company, a technology firm offering a lifestyle super app 
service in Indonesia. Their partner application, AM, is a relatively new product, and 
its entire testing process is still conducted manually by the quality assurance (QA) 
team. With a total of 1,046 test cases, each regression testing cycle for the AM app is 
allocated five days. However, issues often arise during testing that require 
considerable time to resolve before they can be retested. This has become a frequent 
bottleneck, causing the regression testing process to exceed its estimated timeline 
and resulting in delays to the application's release schedule. 

Since the need for regression testing extends beyond The Company. For the 
entire software industry, it is essential to find more efficient ways to accomplish this. 
One of the most effective solutions for reducing testing costs is the combination of 
test automation and the use of appropriate regression testing techniques [7][8]. A 
variety of testing methods have been developed to support and simplify the 
automation of testing within the software development lifecycle. 

A case study of The Company serves as the foundation for this research, where 
real-world industry demands drive the investigation. The study takes an 
exploratory approach, aiming to understand the processes behind test automation, 
uncover new insights, and ultimately improve the productivity and efficiency of 
existing testing workflows. To identify the most effective combination of 
approaches, the research involves experimenting with various technical methods 
for transitioning from manual to automated testing. Observations will be made to 
assess whether the benefits gained are proportional to the effort required, using a 
cost-benefit analysis. The outcome of this study is expected to provide a practical 
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guideline for implementing test automation, which other applications with similar 
characteristics can adapt to. 
 
B. Research Method 

The research process followed in this study adapted the stages outlined by the 
authors in [12][13][14]. The process consisted of seven stages: problem 
formulation, literature review, instrument design, implementation, data collection, 
data analysis, and drawing conclusions and recommendations. The first stage was 
problem formulation, which began with identifying the research topic. The topic was 
selected within the scope of the AM application at The Company by observing the 
current situation and examining the issues experienced by the application. The 
problem was formulated through a review of related prior studies, analysis of 
relevant literature, and exploration of potential research opportunities that offered 
value to both The Company and the wider industry. This study analyzed the rationale 
for automating regression testing, identified areas suitable for automation, and 
examined the cost-benefit implications for The Company and the industry as a whole. 

The second stage was the literature review. Building on the context 
established in the first stage, this step involved collecting and thoroughly studying 
relevant concepts, theories, and prior research. Various references on software 
testing and test automation were explored and used as the foundation for 
understanding. The results of this review served as key references for designing the 
research instruments and selecting evaluation metrics. 

The third stage involved designing the research instruments and 
implementation plan. The instruments were selected based on the technical 
requirements for implementing automated testing at The Company. The design and 
planning process followed an iterative approach using RFC (Request for Comments) 
documents. Each RFC included a proposal supported by research and a 
comprehensive comparison of alternatives. Feedback and suggestions were 
provided through comments or meetings. An RFC document was considered 
complete once all feedback had been incorporated and the proposal received 
approval from all relevant stakeholders. 

The fourth stage involved implementing and automating the interface testing. 
The initial implementation followed the previously designed research instruments. 
Additional test cases and improvements were introduced incrementally. Each test 
case was executed automatically, and its performance was recorded. These 
performance metrics were collected for further analysis. 

The fifth stage involved data collection, which was conducted concurrently 
with the implementation stage. The collected data included performance results 
from both general interface testing and the specific automation of regression testing. 
While performance measurement was carried out automatically, data compilation 
into a structured and readable format was handled manually. 

The sixth stage was data analysis. The analysis focused on the costs and 
benefits of the implemented testing automation based on the collected data. It also 
included evaluations using relevant metrics. Observations from the implementation 
of alternative approaches and their outcomes were also documented. 

The study concluded by drawing conclusions and providing 
recommendations. These were based on the findings and analysis from the earlier 

https://doi.org/10.33022/ijcs.v14i4.4967


  The Indonesian Journal of Computer Science 

https://doi.org/10.33022/ijcs.v14i4.4967  6194 

stages. The conclusions addressed the initial research questions and offered a clear 
summary of the study’s results. The recommendations, based on practical insights 
gained during the research process, aimed to support further efforts related to 
interface testing automation, particularly in the context of regression testing. 
 
Instruments 

The technologies used in this research included TypeScript, JavaScript, and 
Kotlin. TypeScript served as the primary programming language for developing the 
application's interface using the React Native library. JavaScript was used to write 
configuration scripts and tasks not directly related to interface development. 
Meanwhile, Kotlin supported the development of modules that required integration 
with Android hardware. Source code was managed using Git on the GitHub platform, 
specifically within a repository named BN. All pull requests to the BN repository 
were integrated with a Continuous Integration (CI) pipeline through Jenkins. 

Interface testing for the AM application was conducted using Jest and the 
Testing Library. Jest provides built-in support for regression test selection (RTS) 
through the onlyChanged and changedSince configurations, enabling efficient file-
level test execution. This feature represents a lightweight and commonly adopted 
approach in JavaScript-based industry projects [15][16]. In addition to Jest, tests 
adhered to standardized conventions from Testing Library, a framework prominent 
in the JavaScript development community. 

The design of the testing implementation was limited to interface testing 
without external dependencies such as real data from web APIs. To enable 
independent testing of the AM application, this study utilized Nock, an HTTP 
interceptor library that intercepts HTTP calls and returns customizable responses. 
Nock was selected because it allows for manipulating API responses while 
preserving the actual application implementation. 

The structure of test cases followed a hierarchical model starting at the project 
level. A project could contain multiple test suites, usually grouped by functional 
requirements. Each test suite could include one or more test groups, typically 
mapped to application modules. Test groups could be nested recursively and 
contain multiple test cases. By default, test cases followed TestRail configurations, 
which included type, priority, estimated time, test information, and automation 
category. These configurations were optional but helpful in filtering or organizing 
test cases according to specific testing requirements. 

The structure for executing tests, referred to as executable tests, also began at 
the project level, which had access to Test Milestones, Test Plans, and Test Runs. 
Test Milestones were used to track progress and release goals in parallel, 
particularly when multiple targets were managed simultaneously. In the AM 
application, each release was aligned with a single Test Milestone, which could be 
subdivided into Test Sub-Milestones to manage timelines for specific sub-services, 
such as the back office, API, or the AM application itself. Test Plans were used to 
manage multiple Test Runs grouped by type. These groupings, called Test Entries, 
consisted of Test Runs that shared the same name but differed in configuration, such 
as testing methods or target systems. Each Test Run contained test groups with test 
cases that inherited attributes from their definitions, along with test-specific IDs and 
result-related data such as execution status and comments. 

https://doi.org/10.33022/ijcs.v14i4.4967


  The Indonesian Journal of Computer Science 

https://doi.org/10.33022/ijcs.v14i4.4967  6195 

Finally, TestRail provided an API for integrating third-party applications or 
tools. In this research, the TestRail API was used to automate the submission of test 
results from automated testing and to create Test Plans and Test Runs through 
scripting. This integration supported a more efficient, maintainable, and scalable 
testing workflow throughout the project. 
 
Evaluation Metrics 

The performance evaluation of the implementation focused on three 
quantitative metrics: code coverage, test automation productivity, and a cost-benefit 
analysis. These metrics provided measurable insights, while a qualitative evaluation 
was conducted to analyze the potential benefits of test automation. 

To track the progress of interface testing, code coverage was measured to 
indicate the comprehensiveness and effectiveness of the executed tests [17][18]. 
Code coverage typically includes four criteria: statement coverage, branch coverage, 
function coverage, and line coverage. These provide visibility into which statements 
were executed, which conditional paths (e.g., IF–THEN–ELSE or DO WHILE) were 
traversed, and which functions were called. The number of executable lines run 
during testing. This research used Jest’s built-in code coverage reporting, which 
presents these metrics alongside intuitive textual and tabular summaries. The 
implementation was designed to collect coverage data from all files related to the 
interface, including those integrating with Redux. 

In evaluating test automation productivity, two metrics were used: automated 
test case coverage and test design productivity [9][10][11]. Automated test case 
coverage measures the proportion of manual tests that have been automated, 
calculated using Equation 1 

𝑐𝑜𝑣𝑎 =  
𝑡𝑐𝑎

𝑡𝑐𝑚+𝑡𝑐𝑎
 ×  100, 0 ≤ 𝑐𝑜𝑣𝑎 ≤ 100   (1) 

Here, tca and tcm represent the number of automated and manual test cases, 
respectively, and cova denotes the percentage of automated test coverage. Test 
design productivity measures the number of test cases created per unit time (e.g., 
person-hours) using Equation 2 

𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑥 =  
𝑡𝑐𝑥

𝑡
      (2) 

The data for both metrics were recorded incrementally, and the productivity 
values at different stages were compared to observe trends in automation. Test case 
data were sourced from TestRail, and productivity was calculated in person-hours. 

To assess the impact of automation compared to manual testing in regression 
testing, this study considered the perspective of the authors in [7], who argued that 
manual and automated testing are fundamentally different processes, each 
uncovering different types of errors. Therefore, direct comparisons based on cost or 
number of defects may lack meaning. In line with this, the evaluation focused only 
on the time-based cost analysis and qualitative insights. 

The cost of regression testing was modeled using fixed and variable 
components, defined as Vx and Wx for group x. The formula for total cost is described 
in Equation 3 

𝑐𝑜𝑠𝑡𝑥 =  𝑉𝑥 + 𝑡𝑐𝑥  ×  𝑊𝑥     (3) 
Fixed costs refer to the initial implementation time, whereas variable costs increase 
with the number of test cases. For automation, this expands into Equation 4 
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𝑐𝑜𝑠𝑡𝑎 =  𝑉𝑎 + 𝑡𝑐𝑎 ×  𝑊𝑎 =  𝑉𝑎 + 𝑡𝑐𝑎 × (𝑑𝑎 +  𝑒𝑎 + 𝑟𝑎) =  𝑉𝑎 +  𝐷𝑎 + 𝐸𝑎 + 𝑅𝑎   (4) 
Here, Va represents one-time automation implementation cost; Wa includes the 
cumulative time spent on writing (da), executing (ea), and integrating (ra) automated 
tests. Their corresponding uppercase variables (Da, Ea, Ra) represent the total time 
across all automated tests. 

Two assumptions were made in calculating automation cost: first, the initial 
cost (Va) was limited to coding activities and excluded administrative tasks, RFC 
writing, and meetings; second, the required libraries for execution were assumed to 
be pre-installed in the CI environment. Installation time was excluded to avoid 
skewed results, as it involved unrelated external dependencies. 

For manual testing, the assumption was that the application and test 
environment were fully set up before testing. Hence, the only cost incurred was the 
time required for execution. This simplified cost model, using Vm = 0 and Wm = em is 
described in Equation 5 

𝑐𝑜𝑠𝑡𝑚 =  𝑉𝑚 + 𝑡𝑐𝑚 ×  𝑊𝑚 = 0 + 𝑡𝑐𝑚 × 𝑒𝑚 =  𝐸𝑚   (5) 
This approach replaced per-test Wx values with total execution time for all test cases, 
accommodating real-world conditions where each test may have different priorities 
and costs. As the authors in [7] noted, many real-world projects do not treat all test 
cases equally—some are more critical due to their likelihood of detecting defects or 
their impact on the system. 
 
C. Results and Discussion 

The evaluation of interface test automation was based on data collected across 
20 phases of test additions and implementation refinement. Each phase contributed 
data on code coverage metrics from Jest, automation productivity, and time-based 
execution costs. 

 
Table 1. Summary of Testing Performance Across 20 Phases 

Phase 
Code 

Coverage (%) 
Test Case 

Coverage (%) 
Productivity 

Total Pipeline Time (seconds) 

Feature 
All 

(first) 
All 

(second) 
1 1.62 1.33 1.6 62.48 29.49 13.28 
2 5.11 3.34 2 49.63 29.16 14.8 
3 8.53 5.42 2.08 51.14 36.24 16.95 
4 8.2 7.17 2.63 71.4 46.16 20.6 
5 8.85 8.76 4.75 80.52 52.6 23.5 
6 10.92 10.51 5.25 60.22 58.33 23.14 
7 12.31 12.18 3.17 66.22 48.16 23.55 
8 13.15 13.18 2.4 52.75 55.95 24.38 
9 19.11 14.6 1.06 81.27 57.58 24.87 

10 19.47 14.01 - 79.37 56.62 26.65 
11 20.95 15.68 2.5 46.65 61.28 27.76 
12 30.57 16.6 2.75 81.54 72.81 31.07 
13 32.83 17.6 3.25 84.37 65.2 27.09 
14 35.12 18.68 3.25 85.86 68.24 29.82 
15 36.5 19.93 3.75 49.34 65.03 28.68 
16 38.68 21.35 4.25 43.1 67.4 28.39 
17 39.87 22.69 4 70 63.75 31.71 
18 41.07 23.94 4.29 49.53 67.71 35.84 
19 42.24 25.1 4.67 55.14 66.27 31.66 
20 43.57 26.77 5 60.59 73.52 33.24 
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Table 2. Regression Testing Automation Performance 

Release 1 2 3 4 5 

Phase - - - 3 10 

Code Coverage (%) 

Statements - - - 8.16 19.01 
Branch - - - 8.39 19.55 
Functions - - - 8.76 20.21 
Lines - - - 8.24 18.96 

Number of Automated Test Cases - - - 65 168 
Number of Test Cases  689 954 1051 1004 1199 
Test Case Coverage (%) - - - 6.47 14.01 

costa 

Va (hours) - - - 36 59 
Da (hours) - - - 34 43 
Ea (seconds) - - - 32.78 48.29 
Ra (seconds) - - - 3.05 5.97 
Total Ea, Ra (seconds) - - - 37.89 57.15 

costm 
Em (days) 5 5 5 5 5 
Em (hours) 80 80 80 80 72 

Total Time (hours) 80 80 80 150 174 
       

Table 1 consolidates the most relevant and representative metrics for 
evaluating test automation performance. It includes the code coverage percentage, 
the TestRail test case coverage percentage, the calculated test design productivity, 
and the total execution time of both CI pipelines. These metrics provide a 
comprehensive view of the progress, efficiency, and cost implications of the 
automated testing implementation throughout the phases. 

The data related to interface test automation metrics for regression testing 
covers the last five release cycles. These include three releases that employed 
manual regression testing and two releases that adopted automated regression 
testing. For each release, the data collected included the testing phase, during which 
regression testing was conducted, code coverage metrics from Jest, test case 
coverage, and the time-based costs of executing both manual and automated tests. 
The complete dataset is presented in Table 2. 

Test case coverage data included the number of test cases executed 
automatically and the total number of test cases in the Test Run (consisting of both 
manual and automated tests). The automation testing time cost was divided into five 
components: initial implementation cost (in hours), test writing time (in person-
hours), clean test execution time (in seconds), result integration time (in seconds), 
and total execution time (in seconds). For manual testing, only execution time was 
recorded, presented in two time units: the first row shows the time in days, and the 
second in person-hours, calculated using Equation 6 

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 =  𝑛 𝑑𝑎𝑦𝑠 × 8 ℎ𝑜𝑢𝑟𝑠 𝑝𝑒𝑟 𝑑𝑎𝑦 × 2 𝑡𝑒𝑠𝑡𝑒𝑟𝑠   (6) 
The total time cost for both automated and manual testing was then aggregated and 
recorded in hours in the final row. 

The implementation results demonstrated that automated testing had a 
noticeable impact on the development workflow of the AM application. Although the 
number of modules tested automatically remained limited due to time constraints 
and test selection, two key implications emerged when automated tests successfully 
detected minor oversights that could have led to critical failures. 

https://doi.org/10.33022/ijcs.v14i4.4967


  The Indonesian Journal of Computer Science 

https://doi.org/10.33022/ijcs.v14i4.4967  6198 

The first implication was that automated testing reduced code delivery time 
by minimizing the need for manual regression testing. The second was that the 
development team made code changes with greater confidence, as the automated 
tests helped ensure that existing functionality remained intact. In other words, 
automated testing contributed to an increased level of confidence among developers 
in the reliability of their code. 

The analysis of interface test automation metrics and regression testing 
appeared in the following subsection. This analysis unpacked the data from the 
corresponding tables, described the observed outcomes, and discussed the 
implications drawn from the processed results. 
 
Automated Testing Analysis 

The data showed that code coverage generally increased as more modules 
were tested across nearly every phase. However, Phase 4 presented an exception, 
where a decline in coverage was observed—except for function coverage—despite 
the addition of three tested modules. This anomaly may have resulted from external 
factors, such as dynamic changes in the source code repository, which can affect 
overall code coverage. Significant additions or removals of untested code can either 
increase or decrease coverage, depending on the impact of the related modules. 
Modules containing relatively little code may have less influence compared to more 
complex modules with larger codebases. 

Another anomaly appeared in Phase 12, where code coverage was split into 
two segments with a noticeable difference between them. The first segment showed 
a significant increase compared to Phase 10, similar to the jump from Phase 8 to 
Phase 9, likely due to the testing of complex modules such as the Home and Chat 
pages. The second segment marked a shift where the coverage collection 
configuration was adjusted to include files related to Redux. The observed increase 
aligned with expectations, as Redux code was also tested through integration tests. 
Before this change, Redux-related files were not considered valid or relevant to the 
interface and were thus excluded from coverage collection. 

Over two months and 20 development phases, statement coverage increased 
from 0% to 43.57%. The central tendency of coverage change per phase was 1.39%, 
as measured by the median, rather than the mean, which was less suitable due to 
the presence of anomalies, such as the drop in Phase 4 (-0.33%) and the sharp rise 
in Phase 12 (9.62%). 

Changes in the number of tests executed in Jest and reported to TestRail were 
documented to highlight the points of divergence between the two sources. Three 
such discrepancies were identified in Phases 4, 10, and 11. In Phase 4, the number 
of tests remained the same; however, an error occurred when the developer 
assigned duplicate TestRail test case IDs to two different tests. In Phase 10, the 
development and QA teams were finalizing which test cases fell within the scope of 
interface testing. As a result, several integration tests previously linked to TestRail 
were excluded by removing their test case IDs from the titles. However, the tests 
themselves were retained as unit tests in Jest. Phase 11 marked a shift in testing 
conventions, where it became acceptable for a single test to be associated with 
multiple TestRail test case IDs. 
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Observations on test-writing durations indicated that implementing 
automated tests initially required a significant adjustment period, although the 
process began to stabilize after Phase 4. Across all 20 phases, the average test-
writing time was 6.3 hours, ranging from a minimum of 3 hours to a maximum of 16 
hours. The initial phases had longer durations, primarily because the concept of 
automated testing and the testing strategy for the AM application were still 
unfamiliar to the development team. After the early phases, most durations 
stabilized between 3 and 8 hours, except for Phase 9. 

In terms of productivity values, a monotonic increase occurred until Phase 7, 
after which a decline was observed due to the nature of the tested module. The 
module in Phase 7 required a deeper contextual understanding and the 
development of new test tools, both of which consumed additional time. This 
downward trend continued through Phase 9, where productivity reached its lowest 
point across all phases, even lower than the initial productivity in Phase 1. The 
module tested in Phase 9 was the Chat module, which required significantly 
different preparation not accounted for in the initial setup. Since the time spent 
preparing for Phase 9 was included in the test-writing duration, the productivity 
metric was significantly impacted. 

The test case coverage was calculated by dividing the number of test cases 
executed by the total of 1,199 test cases. Over the two-month development period, 
test case coverage increased from 0% to 26.77%, with a single decline observed in 
Phase 10, as previously explained. Excluding Phase 10, the average change in test 
case coverage per phase was 1.45%, with a minimum of 0.92% and a maximum of 
2.09%. Unlike code coverage, changes in test case coverage per phase were expected 
to increase linearly, since the test execution workload was deliberately distributed 
evenly across all phases. 

The average time spent on fetching a branch from Git was 29.25 seconds, 
with a minimum of 20 seconds and a maximum of 38 seconds. The time required for 
the first branch fetch varied consistently, whereas the second branch fetch 
consistently took only two seconds. This discrepancy was likely due to the second 
fetch having prior access to the Git repository, facilitated by the initial fetch, which 
resulted in a shorter and more stable execution time. 

The total test execution time depended on the number of tests run, with 
fewer tests corresponding to shorter durations. In contrast, the total pipeline 
duration was influenced by two unrelated factors: the number of tests and the Git 
fetch time, leading to inconsistent patterns. The difference between total and net 
test execution time stemmed from the teardown process within the Jest testing 
environment. An anomaly occurred in Phase 17, where this difference exceeded 11 
seconds, while the typical range for teardown time differences in the Feature 
pipeline was between 2.4 and 3.3 seconds. 

The first test run showed a trend of increasing duration in line with growing 
code coverage. The second test run also showed an increase, albeit at a slower rate. 
A substantial difference was observed between the first test run and the subsequent 
ones. The investigation revealed that Jest applied automatic caching to previously 
executed tests, affecting all pipelines. Thus, the first run consistently required the 
longest execution time. By Phase 20, the first run took approximately 73 seconds, 
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while subsequent runs took 33 seconds. For both runs, the difference between total 
and net execution time ranged from 1.5 to 3.2 seconds. 

Observations across both pipelines were made using three total time 
comparisons during the first executions: (1) similar number of tests, (2) moderately 
different numbers, and (3) significantly different numbers. The first comparison, 
conducted in Phase 2, involved both pipelines running 40 tests. Although test 
execution times were similar, the All pipeline outperformed the Feature pipeline in 
total time, contrary to expectations, since the Feature pipeline included additional 
steps to compare the source and target Git branches. This indicated that the Feature 
pipeline was less efficient when handling changes involving core components or a 
large number of tests. 

The second comparison, in Phase 3, showed that the Feature pipeline ran 26 
tests and the All pipeline ran 65 tests. Despite the Feature pipeline having a shorter 
test duration, its total time remained longer than the All pipeline, implying that the 
test count difference must be significant enough to offset the overhead. The third 
comparison, seen in Phase 8, involved the Feature pipeline running 14 tests and the 
All pipeline running 159 tests. In this case, the Feature pipeline was 3 seconds faster 
than the All pipeline, even after accounting for Git-related overhead. The difference 
of 145 tests proved sufficient to compensate for the additional Git time, suggesting 
that the Feature pipeline offered tangible benefits at a larger scale. 

To verify this assumption, Phases 15 to 20 were analyzed. In all these phases, 
the Feature pipeline consistently executed far fewer tests (14–28) than the All 
pipeline (245–327). Results showed that the total time in the Feature pipeline was 
consistently lower, aligning with expectations, except in Phase 17. The anomaly in 
Phase 17 was attributed to unusually high Git fetch time and extended teardown 
time, which added 11 seconds. Overall, these findings indicate that the Feature 
pipeline is optimal for minimizing CI pipeline duration when developing features 
that do not involve core components or large-scale code changes. 

To provide a holistic view of the metrics, Figure 1 presents five visualizations 
summarizing the testing performance from Table 1: (a) code coverage, (b) test case 
coverage, (c) test design productivity values, (d) a comparison of total time between 
the Feature pipeline and the All pipeline based on first invocation, and (e) a 
comparison of total time in the All pipeline between first and second invocations. In 
Table 1, it can be observed that code coverage and test case coverage overlapped 
during Phases 5 to 8. From Phase 9 onwards, the percentages began to diverge, 
showing an even wider gap by Phase 12. The trend in code coverage growth 
depended on the complexity of newly tested modules, while the increase in test case 
coverage followed a linear pattern, as seen in Figure 1b. The analysis suggested that 
high code coverage does not imply high test case coverage, and vice versa. 

In Figure 1c, test design productivity values fluctuated over time, with the 
highest recorded at 5.25 tests per hour. Three main factors were identified as 
influencing productivity. The first factor was the availability of reusable test tools 
for the target module. The second was whether the development team already had 
sufficient context about the implementation being tested. The third was the team's 
learning curve. Developers were observed to complete testing more efficiently when 
they were already familiar with the tools and had tested similar test cases related to 
the code implementation. 
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(first invocation) 

 
(e) Comparison of Total Time 

(second invocation) 
Figure 1. Graphical Visualization of the Summary of Testing Performance 

 
Figure 1d shows that the total timeline for the All pipeline tended to remain 

below the Feature pipeline in the earlier phases, but the opposite trend emerged 
toward the end. As previously explained, this shift primarily resulted from the 
difference in the number of tests executed by each pipeline. A significant gap (more 
than 145 tests) was often enough to offset the average additional Git time, allowing 
the Feature pipeline to outperform the All pipeline. Finally, Figure 1e shows that 
subsequent invocations—represented here by the second run—in the All pipeline 
were substantially faster than the first run due to caching mechanisms. The study 
also found that this pattern applied similarly to test execution times in the Feature 
pipeline. 

 
Automated Regression Testing Analysis 
 The explanation begins by providing context for the manual regression 
testing practices employed prior to this study. As shown in Table 2, manual testing 
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during Releases 1 through 3 included only three metrics: total test cases, execution 
time in days, and total execution time in hours. Starting from the initial release of 
the application before Release 1, each regression testing cycle was allocated five 
working days for two testers, totaling 80 person-hours. These five days were 
typically divided into two phases: the first one to three days were used to test 
modules affected by new features, while the remaining days were allocated for 
regression testing of unaffected modules. The intended expectation was for the 
entire process—including testing all available cases, reporting bugs to the 
development team, and verifying the fixes—to fit within this five-day window. 

As a result, the QA team needed to manage their time efficiently to ensure no 
test cases were skipped. A contributing factor to this efficiency was the increasing 
familiarity of the QA team with older test case workflows, allowing them to execute 
those tests more quickly. However, as the number of test cases grew and new 
features were continuously introduced, the QA team sometimes had to make 
compromises to meet the time constraints. This typically involved prioritizing test 
execution based on importance and complexity. Examples of test cases considered 
“skippable” included hard-to-reproduce error flows or older modules that had never 
failed and were assumed to be stable. In practice, this strategy proved unreliable 
and often resulted in delayed releases, as bugs were only discovered after testing. 

This study introduced an experimental hybrid testing approach in Releases 
4 and 5, utilizing the same five-day time benchmark for manual testing. The initial 
implementation took 36 hours over four weeks. Regression testing for Release 4 was 
conducted after Phase 3, with code coverage recorded at approximately 8% and test 
case coverage at 6.47%. A total of 65 test cases were written, requiring 34 hours of 
test authoring. According to the QA team, these 65 test cases did not significantly 
impact their manual testing workload; therefore, manual testing still required 80 
hours. The total execution time for automated regression testing on these 65 test 
cases was 37.89 seconds, comprising 32.775 seconds for test execution and 5.14 
seconds for result integration. Overall, the total time spent on testing in Release 4 
was approximately (36 + 34 + 80) hours + 37.89 seconds, or around 150 hours. 

In comparison, the total time for Release 5 increased to 174 hours. This was 
attributed to significant increases in initial implementation and test writing time, 
which rose to 59 hours and 43 hours, respectively, over a five-week development 
period. The initial implementation was extended to incorporate feedback that had 
not yet been addressed in Release 4 and was refined to meet project requirements 
fully. Test authoring time also remained relatively high, as new tests continued to be 
added during the migration to automated testing. Despite this, manual testing time 
was reduced to 72 hours. The QA team reported that one tester completed their 
portion of testing a day earlier because automated tests covered some of their 
assigned features. This indicated a noticeable impact of test automation by Release 
5, with test case coverage reaching 14%. The total time for automated regression 
testing of 168 test cases was 57.15 seconds, including 48.295 seconds for execution 
and 5.97 seconds for result integration. 

To support a long-term analysis, this study projected the performance of 
regression testing if the next application release (Release 6) were conducted after 
Phase 20, as shown in Table 3. The projection drew on data from the regression 
testing automation experiment conducted in Phase 20 and the estimated duration 
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of manual testing provided by the quality assurance team. No further 
implementation effort occurred beyond Phase 20, so the implementation cost was 
assumed to be zero. 

The execution time of automated regression testing was measured directly 
from the test run in Phase 20, under the same conditions and implementation as 
those of the previous releases. The total execution time was 78.61 seconds, 
comprising 70.453 seconds for test execution and 8.08 seconds for result 
integration. After the regression testing, optimization was applied by converting 
arrays to sets for element lookups. As a result, the result integration time was 
reduced to 4.38 seconds for 321 tests, making it even faster than the result 
integration time recorded in Release 5. 

According to estimates from the quality assurance team, the features already 
covered by automated tests reduced manual testing time by two to three working 
days for one tester. The testing allocation was adjusted to five days for tester one 
and three days for tester two, totaling eight workdays or 64 person-hours. Based on 
this projection, the total testing time dropped significantly to 106.5 hours. 

Three long-term outcomes emerged from the application of automated 
testing. First, the duration required to write new tests consistently decreased over 
time and eventually stabilized at a lower threshold. This occurred because, once 
tests were automated, no additional effort was needed aside from maintenance, and 
the number of new tests only needed to accommodate newly added features. 

Second, the execution time of automated tests remained within a minute's 
range, even as code coverage increased. In Phase 20, 43% code coverage required 
only 70 seconds (approximately one minute) to execute. Since the AM application 
contained no use cases involving excessive iteration that could affect runtime, the 
increase in code coverage was expected to remain within the same time range. This 
indicated that the execution time of automated tests could be considered negligible 
compared to the total regression testing duration, which was measured in hours. 

 
Table 3. Projected Performance of Regression Testing Automation 

Code Coverage (%) 

Statements 43.57 
Branch 39.1 
Functions 38.7 
Lines 43.63 

Number of Automated Test Cases 321 
Number of Test Cases  1199 
Test Case Coverage (%) 26.77 

costa 

Va (hours) 0 
Da (hours) 42.5 
Ea (seconds) 70.45 
Ra (seconds) 6.14 
Total Ea, Ra (seconds) 4.38 

costm 
Em (days) 5 
Em (hours) 64 

Total Time (hours) 106.5 
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Figure 2. Illustration: Total Regression Testing Time in the Long Term 

 
Third, the duration of manual testing steadily declined as the coverage of 

automated testing increased. Although the total regression testing time could not be 
definitively concluded in this study, it was expected to fall within one of two 
outcome scenarios. 

The first scenario represented an ideal condition in which the total 
regression testing time stabilized at less than five days, as illustrated in Figure 2. 
This scenario assumed minimal changes were introduced to existing features, and if 
any changes did occur, they were not breaking changes. Automated tests that 
replaced manual testing for these features remained relevant without requiring 
intensive maintenance. As a result, the time contribution from automated testing 
was minimal or could be disregarded in the overall time calculation. 

The remaining time could then be used to reduce either the time allocation 
or the resources required, for instance, by shortening the regression testing 
schedule to three days or assigning only one tester to perform the regression testing. 
This allowed the testing team's resources to be redirected toward more meaningful 
tasks, rather than being focused solely on regression testing. 

The second scenario is one in which the total time remains unchanged, as 
illustrated in Figure 3. The assumption in this scenario is the worst-case situation 
where development not only adds new functionality with each release but also 
modifies existing functionality. In this case, tests become out of sync with the 
product and require updates. The duration for writing tests remains high due to the 
constant addition of features and intensive maintenance in each release. 

At first glance, the impact of test automation may not appear significant 
because the total time is “about the same” as manual testing. However, the second 
scenario offers a different outcome than previous manual testing, where the five-
day window can now accommodate the entire regression testing process without 
requiring compromises. With time made available from automated testing, 
regression testing can complete all test cases earlier, allowing bugs to be identified 
and fixed before the deadline. All the benefits presented in the second scenario also 
apply to the first scenario. 
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Figure 3. Illustration: Long-Term Outcomes of Test Automation 

 
The implication of the two scenarios above is that test automation can reduce 

the risk of application release delays caused by regression testing. Even though the 
number of features and tests will increase as development progresses, the 
regression testing workload becomes more predictable and does not require 
compromise. Future application releases can be carried out more regularly, with 
shorter intervals compared to the previous release intervals that could stretch from 
one to two months. 
 
D. Conclusion 

Motivated by real-world industrial needs, this study reports the experience of 
transitioning from manual regression testing to automated regression testing for 
one of the applications at PT. XYZ. Before the study, regression testing was 
conducted manually, which was subjective and costly. Test automation was then 
implemented as a means to enhance testing productivity and efficiency. This study 
automated the test execution phase and integrated the results for the test analysis 
phase. The preparation and implementation framework of test automation 
described in this paper is expected to serve as a guideline for other industrial 
applications with similar specifications that also intend to adopt test automation. 

Over two months, this study developed more than 300 automated test cases and 
executed regression testing for two application releases. The performance of the 
automated testing was observed based on metrics such as code coverage, 
productivity, and time-cost analysis. The results were then used to analyze the costs 
and benefits of regression testing using the hybrid testing approach. 

Experiments were conducted to find efficient alternatives for test execution by 
splitting the CI pipeline into two types: the Feature pipeline, which runs only tests 
related to recent changes (or a subset of tests), and the All pipeline, which runs all 
tests. The analysis showed that the Feature pipeline is not suitable for changes that 
involve core components or impact multiple tests simultaneously. However, it is 
appropriate when the number of tests run is significantly smaller than the total test 
count. Based on the tested application, the Feature pipeline only outperforms the All 
pipeline in execution time if the test count difference exceeds 145. This is because 
the Feature pipeline requires additional time to compare the source and target 
branches in Git. 
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The findings of this study demonstrate that test automation has a tangible 
impact on three aspects: regression testing, application releases, and the application 
development workflow. First, the effect of automation was already evident in time 
allocation (person-hours) at just 14% test case coverage, or 168 tests. In the long-
term analysis, test automation is projected to reduce the overall time required for 
regression testing, or at least stabilize the total time, even as the application grows 
and the number of tests increases. Second, automation can reduce the risk of release 
delays caused by regression testing. As a result, application releases can be 
scheduled more frequently and regularly. Lastly, automation can reduce the need 
for manual regression testing for every code change while still ensuring the quality 
of the developed product. 

One limitation of this study is the short duration available for data collection. The 
data was collected over two months, during which only two application releases 
occurred. Therefore, the impact analysis of test automation was based on limited 
data. A long-term analysis was conducted theoretically, presenting abstract 
scenarios based on the testing team's domain knowledge and quantitative 
projections from real-world experiments. Additionally, this study was scoped to the 
AM application at PT. XYZ. Research in different contexts may yield different results. 

Based on the research conducted, several suggestions can be made to improve 
future studies. First, the study could be conducted over a more extended period or 
applied to more application releases. The more data collected, the more concrete the 
analysis becomes, which could potentially differ from the projected scenarios. 
Second, future research could aim to implement end-to-end automation by 
generating test cases automatically during the test design phase. While this would 
broaden the scope and complexity of the study, it would also contribute significantly 
to both academic and industrial fields related to test automation, which is still a 
relatively new field. Lastly, future studies could enhance the test automation 
artifacts or processes by exploring the latest conventions and alternatives. 
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