
The Indonesian Journal of Computer Science
www.ijcs.net

Volume 14, Issue 4, August 2025
https://doi.org/10.33022/ijcs.v14i4.4967

Attribution-ShareAlike 4.0 International License 6191

Automation and Selection Technique for Regression Testing: An Empirical
Analysis

Muhammad Hilman1, Wulan Mantiri2
muhammad.hilman@ui.ac.id1, wulan.mantiri@ui.ac.id2
1,2Computer Systems Lab (CSL), Faculty of Computer Science, Universitas Indonesia

Article Information Abstract

Received : 6 Aug 2025
Revised : 11 Aug 2025
Accepted : 27 Aug 2025

Software testing, particularly regression testing, is a process that is required
when changes are made to the software or its environment to ensure that the
software continues to perform as expected. Motivated by real industry needs,
this study reports on the experience of transitioning from manual to
automated regression testing in one of the mobile applications at a company
that provides a lifestyle super app service in Indonesia. Prior to this study,
regression testing was conducted manually, resulting in significant costs and
inherent subjectivity. Test automation is then applied to the activities of test
execution and test result integration as an effort to increase test productivity
and efficiency. This study aims to find an efficient testing alternative by
separating the flow that runs tests related to changes from the flow that runs
all tests. Based on the analysis of the tested application, each flow has its trade-
offs. The results show that test automation can provide benefits for regression
testing, application releases, and software engineering flow. The framework
presented in this paper aims to serve as a guideline for other industrial
applications with similar specifications that are also considering
implementing test automation.

Keywords

Software testing,
regression testing, test
automation, test
execution, test result
integration

https://doi.org/10.33022/ijcs.v14i4.4967
https://creativecommons.org/licenses/by-sa/4.0/

 The Indonesian Journal of Computer Science

https://doi.org/10.33022/ijcs.v14i4.4967 6192

A. Introduction
Software testing is a structured process designed to ensure that an application

performs as expected. When new features are added or existing ones are modified,
introducing new functionality, a specific type of testing known as regression testing
is carried out to verify that these changes do not negatively impact previously
developed and tested functionalities [1][2]. Typically, regression testing involves re-
executing all existing test cases across both modified and unmodified parts of the
codebase [3][4]. As new functionalities are introduced, additional test cases must be
created and executed, resulting in increased testing costs that are proportional to
the growing complexity and size of the software.

In practice, software testing—particularly regression testing—represents one
of the most significant cost drivers in software development projects. Studies have
shown that testing can consume up to 50% of the total project budget [5][6][7][8].
These costs encompass not only financial expenditures but also human resources,
labor, time, and numerous other factors. One of the key reasons regression testing
can be so costly is that it is often performed manually. In manual regression testing,
the quality assurance (QA) team runs all test cases on the latest version of the
software and reports any issues encountered. Over time, many of these test cases
become repetitive and trivial, as features that haven't been changed or are unrelated
to recent updates are still tested, even though their results remain unchanged from
previous test cycles. Additionally, manual regression testing is inherently subjective
and highly susceptible to human error [9][10][11].

One company that has encountered significant challenges with manual
regression testing is The Company, a technology firm offering a lifestyle super app
service in Indonesia. Their partner application, AM, is a relatively new product, and
its entire testing process is still conducted manually by the quality assurance (QA)
team. With a total of 1,046 test cases, each regression testing cycle for the AM app is
allocated five days. However, issues often arise during testing that require
considerable time to resolve before they can be retested. This has become a frequent
bottleneck, causing the regression testing process to exceed its estimated timeline
and resulting in delays to the application's release schedule.

Since the need for regression testing extends beyond The Company. For the
entire software industry, it is essential to find more efficient ways to accomplish this.
One of the most effective solutions for reducing testing costs is the combination of
test automation and the use of appropriate regression testing techniques [7][8]. A
variety of testing methods have been developed to support and simplify the
automation of testing within the software development lifecycle.

A case study of The Company serves as the foundation for this research, where
real-world industry demands drive the investigation. The study takes an
exploratory approach, aiming to understand the processes behind test automation,
uncover new insights, and ultimately improve the productivity and efficiency of
existing testing workflows. To identify the most effective combination of
approaches, the research involves experimenting with various technical methods
for transitioning from manual to automated testing. Observations will be made to
assess whether the benefits gained are proportional to the effort required, using a
cost-benefit analysis. The outcome of this study is expected to provide a practical

https://doi.org/10.33022/ijcs.v14i4.4967

 The Indonesian Journal of Computer Science

https://doi.org/10.33022/ijcs.v14i4.4967 6193

guideline for implementing test automation, which other applications with similar
characteristics can adapt to.

B. Research Method

The research process followed in this study adapted the stages outlined by the
authors in [12][13][14]. The process consisted of seven stages: problem
formulation, literature review, instrument design, implementation, data collection,
data analysis, and drawing conclusions and recommendations. The first stage was
problem formulation, which began with identifying the research topic. The topic was
selected within the scope of the AM application at The Company by observing the
current situation and examining the issues experienced by the application. The
problem was formulated through a review of related prior studies, analysis of
relevant literature, and exploration of potential research opportunities that offered
value to both The Company and the wider industry. This study analyzed the rationale
for automating regression testing, identified areas suitable for automation, and
examined the cost-benefit implications for The Company and the industry as a whole.

The second stage was the literature review. Building on the context
established in the first stage, this step involved collecting and thoroughly studying
relevant concepts, theories, and prior research. Various references on software
testing and test automation were explored and used as the foundation for
understanding. The results of this review served as key references for designing the
research instruments and selecting evaluation metrics.

The third stage involved designing the research instruments and
implementation plan. The instruments were selected based on the technical
requirements for implementing automated testing at The Company. The design and
planning process followed an iterative approach using RFC (Request for Comments)
documents. Each RFC included a proposal supported by research and a
comprehensive comparison of alternatives. Feedback and suggestions were
provided through comments or meetings. An RFC document was considered
complete once all feedback had been incorporated and the proposal received
approval from all relevant stakeholders.

The fourth stage involved implementing and automating the interface testing.
The initial implementation followed the previously designed research instruments.
Additional test cases and improvements were introduced incrementally. Each test
case was executed automatically, and its performance was recorded. These
performance metrics were collected for further analysis.

The fifth stage involved data collection, which was conducted concurrently
with the implementation stage. The collected data included performance results
from both general interface testing and the specific automation of regression testing.
While performance measurement was carried out automatically, data compilation
into a structured and readable format was handled manually.

The sixth stage was data analysis. The analysis focused on the costs and
benefits of the implemented testing automation based on the collected data. It also
included evaluations using relevant metrics. Observations from the implementation
of alternative approaches and their outcomes were also documented.

The study concluded by drawing conclusions and providing
recommendations. These were based on the findings and analysis from the earlier

https://doi.org/10.33022/ijcs.v14i4.4967

 The Indonesian Journal of Computer Science

https://doi.org/10.33022/ijcs.v14i4.4967 6194

stages. The conclusions addressed the initial research questions and offered a clear
summary of the study’s results. The recommendations, based on practical insights
gained during the research process, aimed to support further efforts related to
interface testing automation, particularly in the context of regression testing.

Instruments

The technologies used in this research included TypeScript, JavaScript, and
Kotlin. TypeScript served as the primary programming language for developing the
application's interface using the React Native library. JavaScript was used to write
configuration scripts and tasks not directly related to interface development.
Meanwhile, Kotlin supported the development of modules that required integration
with Android hardware. Source code was managed using Git on the GitHub platform,
specifically within a repository named BN. All pull requests to the BN repository
were integrated with a Continuous Integration (CI) pipeline through Jenkins.

Interface testing for the AM application was conducted using Jest and the
Testing Library. Jest provides built-in support for regression test selection (RTS)
through the onlyChanged and changedSince configurations, enabling efficient file-
level test execution. This feature represents a lightweight and commonly adopted
approach in JavaScript-based industry projects [15][16]. In addition to Jest, tests
adhered to standardized conventions from Testing Library, a framework prominent
in the JavaScript development community.

The design of the testing implementation was limited to interface testing
without external dependencies such as real data from web APIs. To enable
independent testing of the AM application, this study utilized Nock, an HTTP
interceptor library that intercepts HTTP calls and returns customizable responses.
Nock was selected because it allows for manipulating API responses while
preserving the actual application implementation.

The structure of test cases followed a hierarchical model starting at the project
level. A project could contain multiple test suites, usually grouped by functional
requirements. Each test suite could include one or more test groups, typically
mapped to application modules. Test groups could be nested recursively and
contain multiple test cases. By default, test cases followed TestRail configurations,
which included type, priority, estimated time, test information, and automation
category. These configurations were optional but helpful in filtering or organizing
test cases according to specific testing requirements.

The structure for executing tests, referred to as executable tests, also began at
the project level, which had access to Test Milestones, Test Plans, and Test Runs.
Test Milestones were used to track progress and release goals in parallel,
particularly when multiple targets were managed simultaneously. In the AM
application, each release was aligned with a single Test Milestone, which could be
subdivided into Test Sub-Milestones to manage timelines for specific sub-services,
such as the back office, API, or the AM application itself. Test Plans were used to
manage multiple Test Runs grouped by type. These groupings, called Test Entries,
consisted of Test Runs that shared the same name but differed in configuration, such
as testing methods or target systems. Each Test Run contained test groups with test
cases that inherited attributes from their definitions, along with test-specific IDs and
result-related data such as execution status and comments.

https://doi.org/10.33022/ijcs.v14i4.4967

 The Indonesian Journal of Computer Science

https://doi.org/10.33022/ijcs.v14i4.4967 6195

Finally, TestRail provided an API for integrating third-party applications or
tools. In this research, the TestRail API was used to automate the submission of test
results from automated testing and to create Test Plans and Test Runs through
scripting. This integration supported a more efficient, maintainable, and scalable
testing workflow throughout the project.

Evaluation Metrics

The performance evaluation of the implementation focused on three
quantitative metrics: code coverage, test automation productivity, and a cost-benefit
analysis. These metrics provided measurable insights, while a qualitative evaluation
was conducted to analyze the potential benefits of test automation.

To track the progress of interface testing, code coverage was measured to
indicate the comprehensiveness and effectiveness of the executed tests [17][18].
Code coverage typically includes four criteria: statement coverage, branch coverage,
function coverage, and line coverage. These provide visibility into which statements
were executed, which conditional paths (e.g., IF–THEN–ELSE or DO WHILE) were
traversed, and which functions were called. The number of executable lines run
during testing. This research used Jest’s built-in code coverage reporting, which
presents these metrics alongside intuitive textual and tabular summaries. The
implementation was designed to collect coverage data from all files related to the
interface, including those integrating with Redux.

In evaluating test automation productivity, two metrics were used: automated
test case coverage and test design productivity [9][10][11]. Automated test case
coverage measures the proportion of manual tests that have been automated,
calculated using Equation 1

𝑐𝑜𝑣𝑎 =
𝑡𝑐𝑎

𝑡𝑐𝑚+𝑡𝑐𝑎
 × 100, 0 ≤ 𝑐𝑜𝑣𝑎 ≤ 100 (1)

Here, tca and tcm represent the number of automated and manual test cases,
respectively, and cova denotes the percentage of automated test coverage. Test
design productivity measures the number of test cases created per unit time (e.g.,
person-hours) using Equation 2

𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑥 =
𝑡𝑐𝑥

𝑡
 (2)

The data for both metrics were recorded incrementally, and the productivity
values at different stages were compared to observe trends in automation. Test case
data were sourced from TestRail, and productivity was calculated in person-hours.

To assess the impact of automation compared to manual testing in regression
testing, this study considered the perspective of the authors in [7], who argued that
manual and automated testing are fundamentally different processes, each
uncovering different types of errors. Therefore, direct comparisons based on cost or
number of defects may lack meaning. In line with this, the evaluation focused only
on the time-based cost analysis and qualitative insights.

The cost of regression testing was modeled using fixed and variable
components, defined as Vx and Wx for group x. The formula for total cost is described
in Equation 3

𝑐𝑜𝑠𝑡𝑥 = 𝑉𝑥 + 𝑡𝑐𝑥 × 𝑊𝑥 (3)
Fixed costs refer to the initial implementation time, whereas variable costs increase
with the number of test cases. For automation, this expands into Equation 4

https://doi.org/10.33022/ijcs.v14i4.4967

 The Indonesian Journal of Computer Science

https://doi.org/10.33022/ijcs.v14i4.4967 6196

𝑐𝑜𝑠𝑡𝑎 = 𝑉𝑎 + 𝑡𝑐𝑎 × 𝑊𝑎 = 𝑉𝑎 + 𝑡𝑐𝑎 × (𝑑𝑎 + 𝑒𝑎 + 𝑟𝑎) = 𝑉𝑎 + 𝐷𝑎 + 𝐸𝑎 + 𝑅𝑎 (4)
Here, Va represents one-time automation implementation cost; Wa includes the
cumulative time spent on writing (da), executing (ea), and integrating (ra) automated
tests. Their corresponding uppercase variables (Da, Ea, Ra) represent the total time
across all automated tests.

Two assumptions were made in calculating automation cost: first, the initial
cost (Va) was limited to coding activities and excluded administrative tasks, RFC
writing, and meetings; second, the required libraries for execution were assumed to
be pre-installed in the CI environment. Installation time was excluded to avoid
skewed results, as it involved unrelated external dependencies.

For manual testing, the assumption was that the application and test
environment were fully set up before testing. Hence, the only cost incurred was the
time required for execution. This simplified cost model, using Vm = 0 and Wm = em is
described in Equation 5

𝑐𝑜𝑠𝑡𝑚 = 𝑉𝑚 + 𝑡𝑐𝑚 × 𝑊𝑚 = 0 + 𝑡𝑐𝑚 × 𝑒𝑚 = 𝐸𝑚 (5)
This approach replaced per-test Wx values with total execution time for all test cases,
accommodating real-world conditions where each test may have different priorities
and costs. As the authors in [7] noted, many real-world projects do not treat all test
cases equally—some are more critical due to their likelihood of detecting defects or
their impact on the system.

C. Results and Discussion

The evaluation of interface test automation was based on data collected across
20 phases of test additions and implementation refinement. Each phase contributed
data on code coverage metrics from Jest, automation productivity, and time-based
execution costs.

Table 1. Summary of Testing Performance Across 20 Phases

Phase
Code

Coverage (%)
Test Case

Coverage (%)
Productivity

Total Pipeline Time (seconds)

Feature
All

(first)
All

(second)
1 1.62 1.33 1.6 62.48 29.49 13.28
2 5.11 3.34 2 49.63 29.16 14.8
3 8.53 5.42 2.08 51.14 36.24 16.95
4 8.2 7.17 2.63 71.4 46.16 20.6
5 8.85 8.76 4.75 80.52 52.6 23.5
6 10.92 10.51 5.25 60.22 58.33 23.14
7 12.31 12.18 3.17 66.22 48.16 23.55
8 13.15 13.18 2.4 52.75 55.95 24.38
9 19.11 14.6 1.06 81.27 57.58 24.87

10 19.47 14.01 - 79.37 56.62 26.65
11 20.95 15.68 2.5 46.65 61.28 27.76
12 30.57 16.6 2.75 81.54 72.81 31.07
13 32.83 17.6 3.25 84.37 65.2 27.09
14 35.12 18.68 3.25 85.86 68.24 29.82
15 36.5 19.93 3.75 49.34 65.03 28.68
16 38.68 21.35 4.25 43.1 67.4 28.39
17 39.87 22.69 4 70 63.75 31.71
18 41.07 23.94 4.29 49.53 67.71 35.84
19 42.24 25.1 4.67 55.14 66.27 31.66
20 43.57 26.77 5 60.59 73.52 33.24

https://doi.org/10.33022/ijcs.v14i4.4967

 The Indonesian Journal of Computer Science

https://doi.org/10.33022/ijcs.v14i4.4967 6197

Table 2. Regression Testing Automation Performance

Release 1 2 3 4 5

Phase - - - 3 10

Code Coverage (%)

Statements - - - 8.16 19.01
Branch - - - 8.39 19.55
Functions - - - 8.76 20.21
Lines - - - 8.24 18.96

Number of Automated Test Cases - - - 65 168
Number of Test Cases 689 954 1051 1004 1199
Test Case Coverage (%) - - - 6.47 14.01

costa

Va (hours) - - - 36 59
Da (hours) - - - 34 43
Ea (seconds) - - - 32.78 48.29
Ra (seconds) - - - 3.05 5.97
Total Ea, Ra (seconds) - - - 37.89 57.15

costm
Em (days) 5 5 5 5 5
Em (hours) 80 80 80 80 72

Total Time (hours) 80 80 80 150 174

Table 1 consolidates the most relevant and representative metrics for
evaluating test automation performance. It includes the code coverage percentage,
the TestRail test case coverage percentage, the calculated test design productivity,
and the total execution time of both CI pipelines. These metrics provide a
comprehensive view of the progress, efficiency, and cost implications of the
automated testing implementation throughout the phases.

The data related to interface test automation metrics for regression testing
covers the last five release cycles. These include three releases that employed
manual regression testing and two releases that adopted automated regression
testing. For each release, the data collected included the testing phase, during which
regression testing was conducted, code coverage metrics from Jest, test case
coverage, and the time-based costs of executing both manual and automated tests.
The complete dataset is presented in Table 2.

Test case coverage data included the number of test cases executed
automatically and the total number of test cases in the Test Run (consisting of both
manual and automated tests). The automation testing time cost was divided into five
components: initial implementation cost (in hours), test writing time (in person-
hours), clean test execution time (in seconds), result integration time (in seconds),
and total execution time (in seconds). For manual testing, only execution time was
recorded, presented in two time units: the first row shows the time in days, and the
second in person-hours, calculated using Equation 6

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 = 𝑛 𝑑𝑎𝑦𝑠 × 8 ℎ𝑜𝑢𝑟𝑠 𝑝𝑒𝑟 𝑑𝑎𝑦 × 2 𝑡𝑒𝑠𝑡𝑒𝑟𝑠 (6)
The total time cost for both automated and manual testing was then aggregated and
recorded in hours in the final row.

The implementation results demonstrated that automated testing had a
noticeable impact on the development workflow of the AM application. Although the
number of modules tested automatically remained limited due to time constraints
and test selection, two key implications emerged when automated tests successfully
detected minor oversights that could have led to critical failures.

https://doi.org/10.33022/ijcs.v14i4.4967

 The Indonesian Journal of Computer Science

https://doi.org/10.33022/ijcs.v14i4.4967 6198

The first implication was that automated testing reduced code delivery time
by minimizing the need for manual regression testing. The second was that the
development team made code changes with greater confidence, as the automated
tests helped ensure that existing functionality remained intact. In other words,
automated testing contributed to an increased level of confidence among developers
in the reliability of their code.

The analysis of interface test automation metrics and regression testing
appeared in the following subsection. This analysis unpacked the data from the
corresponding tables, described the observed outcomes, and discussed the
implications drawn from the processed results.

Automated Testing Analysis

The data showed that code coverage generally increased as more modules
were tested across nearly every phase. However, Phase 4 presented an exception,
where a decline in coverage was observed—except for function coverage—despite
the addition of three tested modules. This anomaly may have resulted from external
factors, such as dynamic changes in the source code repository, which can affect
overall code coverage. Significant additions or removals of untested code can either
increase or decrease coverage, depending on the impact of the related modules.
Modules containing relatively little code may have less influence compared to more
complex modules with larger codebases.

Another anomaly appeared in Phase 12, where code coverage was split into
two segments with a noticeable difference between them. The first segment showed
a significant increase compared to Phase 10, similar to the jump from Phase 8 to
Phase 9, likely due to the testing of complex modules such as the Home and Chat
pages. The second segment marked a shift where the coverage collection
configuration was adjusted to include files related to Redux. The observed increase
aligned with expectations, as Redux code was also tested through integration tests.
Before this change, Redux-related files were not considered valid or relevant to the
interface and were thus excluded from coverage collection.

Over two months and 20 development phases, statement coverage increased
from 0% to 43.57%. The central tendency of coverage change per phase was 1.39%,
as measured by the median, rather than the mean, which was less suitable due to
the presence of anomalies, such as the drop in Phase 4 (-0.33%) and the sharp rise
in Phase 12 (9.62%).

Changes in the number of tests executed in Jest and reported to TestRail were
documented to highlight the points of divergence between the two sources. Three
such discrepancies were identified in Phases 4, 10, and 11. In Phase 4, the number
of tests remained the same; however, an error occurred when the developer
assigned duplicate TestRail test case IDs to two different tests. In Phase 10, the
development and QA teams were finalizing which test cases fell within the scope of
interface testing. As a result, several integration tests previously linked to TestRail
were excluded by removing their test case IDs from the titles. However, the tests
themselves were retained as unit tests in Jest. Phase 11 marked a shift in testing
conventions, where it became acceptable for a single test to be associated with
multiple TestRail test case IDs.

https://doi.org/10.33022/ijcs.v14i4.4967

 The Indonesian Journal of Computer Science

https://doi.org/10.33022/ijcs.v14i4.4967 6199

Observations on test-writing durations indicated that implementing
automated tests initially required a significant adjustment period, although the
process began to stabilize after Phase 4. Across all 20 phases, the average test-
writing time was 6.3 hours, ranging from a minimum of 3 hours to a maximum of 16
hours. The initial phases had longer durations, primarily because the concept of
automated testing and the testing strategy for the AM application were still
unfamiliar to the development team. After the early phases, most durations
stabilized between 3 and 8 hours, except for Phase 9.

In terms of productivity values, a monotonic increase occurred until Phase 7,
after which a decline was observed due to the nature of the tested module. The
module in Phase 7 required a deeper contextual understanding and the
development of new test tools, both of which consumed additional time. This
downward trend continued through Phase 9, where productivity reached its lowest
point across all phases, even lower than the initial productivity in Phase 1. The
module tested in Phase 9 was the Chat module, which required significantly
different preparation not accounted for in the initial setup. Since the time spent
preparing for Phase 9 was included in the test-writing duration, the productivity
metric was significantly impacted.

The test case coverage was calculated by dividing the number of test cases
executed by the total of 1,199 test cases. Over the two-month development period,
test case coverage increased from 0% to 26.77%, with a single decline observed in
Phase 10, as previously explained. Excluding Phase 10, the average change in test
case coverage per phase was 1.45%, with a minimum of 0.92% and a maximum of
2.09%. Unlike code coverage, changes in test case coverage per phase were expected
to increase linearly, since the test execution workload was deliberately distributed
evenly across all phases.

The average time spent on fetching a branch from Git was 29.25 seconds,
with a minimum of 20 seconds and a maximum of 38 seconds. The time required for
the first branch fetch varied consistently, whereas the second branch fetch
consistently took only two seconds. This discrepancy was likely due to the second
fetch having prior access to the Git repository, facilitated by the initial fetch, which
resulted in a shorter and more stable execution time.

The total test execution time depended on the number of tests run, with
fewer tests corresponding to shorter durations. In contrast, the total pipeline
duration was influenced by two unrelated factors: the number of tests and the Git
fetch time, leading to inconsistent patterns. The difference between total and net
test execution time stemmed from the teardown process within the Jest testing
environment. An anomaly occurred in Phase 17, where this difference exceeded 11
seconds, while the typical range for teardown time differences in the Feature
pipeline was between 2.4 and 3.3 seconds.

The first test run showed a trend of increasing duration in line with growing
code coverage. The second test run also showed an increase, albeit at a slower rate.
A substantial difference was observed between the first test run and the subsequent
ones. The investigation revealed that Jest applied automatic caching to previously
executed tests, affecting all pipelines. Thus, the first run consistently required the
longest execution time. By Phase 20, the first run took approximately 73 seconds,

https://doi.org/10.33022/ijcs.v14i4.4967

 The Indonesian Journal of Computer Science

https://doi.org/10.33022/ijcs.v14i4.4967 6200

while subsequent runs took 33 seconds. For both runs, the difference between total
and net execution time ranged from 1.5 to 3.2 seconds.

Observations across both pipelines were made using three total time
comparisons during the first executions: (1) similar number of tests, (2) moderately
different numbers, and (3) significantly different numbers. The first comparison,
conducted in Phase 2, involved both pipelines running 40 tests. Although test
execution times were similar, the All pipeline outperformed the Feature pipeline in
total time, contrary to expectations, since the Feature pipeline included additional
steps to compare the source and target Git branches. This indicated that the Feature
pipeline was less efficient when handling changes involving core components or a
large number of tests.

The second comparison, in Phase 3, showed that the Feature pipeline ran 26
tests and the All pipeline ran 65 tests. Despite the Feature pipeline having a shorter
test duration, its total time remained longer than the All pipeline, implying that the
test count difference must be significant enough to offset the overhead. The third
comparison, seen in Phase 8, involved the Feature pipeline running 14 tests and the
All pipeline running 159 tests. In this case, the Feature pipeline was 3 seconds faster
than the All pipeline, even after accounting for Git-related overhead. The difference
of 145 tests proved sufficient to compensate for the additional Git time, suggesting
that the Feature pipeline offered tangible benefits at a larger scale.

To verify this assumption, Phases 15 to 20 were analyzed. In all these phases,
the Feature pipeline consistently executed far fewer tests (14–28) than the All
pipeline (245–327). Results showed that the total time in the Feature pipeline was
consistently lower, aligning with expectations, except in Phase 17. The anomaly in
Phase 17 was attributed to unusually high Git fetch time and extended teardown
time, which added 11 seconds. Overall, these findings indicate that the Feature
pipeline is optimal for minimizing CI pipeline duration when developing features
that do not involve core components or large-scale code changes.

To provide a holistic view of the metrics, Figure 1 presents five visualizations
summarizing the testing performance from Table 1: (a) code coverage, (b) test case
coverage, (c) test design productivity values, (d) a comparison of total time between
the Feature pipeline and the All pipeline based on first invocation, and (e) a
comparison of total time in the All pipeline between first and second invocations. In
Table 1, it can be observed that code coverage and test case coverage overlapped
during Phases 5 to 8. From Phase 9 onwards, the percentages began to diverge,
showing an even wider gap by Phase 12. The trend in code coverage growth
depended on the complexity of newly tested modules, while the increase in test case
coverage followed a linear pattern, as seen in Figure 1b. The analysis suggested that
high code coverage does not imply high test case coverage, and vice versa.

In Figure 1c, test design productivity values fluctuated over time, with the
highest recorded at 5.25 tests per hour. Three main factors were identified as
influencing productivity. The first factor was the availability of reusable test tools
for the target module. The second was whether the development team already had
sufficient context about the implementation being tested. The third was the team's
learning curve. Developers were observed to complete testing more efficiently when
they were already familiar with the tools and had tested similar test cases related to
the code implementation.

https://doi.org/10.33022/ijcs.v14i4.4967

 The Indonesian Journal of Computer Science

https://doi.org/10.33022/ijcs.v14i4.4967 6201

(a) Code Coverage (b) Test Case Coverage

(c) Test Design Productivity Values (d) Comparison of Total Time

(first invocation)

(e) Comparison of Total Time

(second invocation)
Figure 1. Graphical Visualization of the Summary of Testing Performance

Figure 1d shows that the total timeline for the All pipeline tended to remain

below the Feature pipeline in the earlier phases, but the opposite trend emerged
toward the end. As previously explained, this shift primarily resulted from the
difference in the number of tests executed by each pipeline. A significant gap (more
than 145 tests) was often enough to offset the average additional Git time, allowing
the Feature pipeline to outperform the All pipeline. Finally, Figure 1e shows that
subsequent invocations—represented here by the second run—in the All pipeline
were substantially faster than the first run due to caching mechanisms. The study
also found that this pattern applied similarly to test execution times in the Feature
pipeline.

Automated Regression Testing Analysis
 The explanation begins by providing context for the manual regression
testing practices employed prior to this study. As shown in Table 2, manual testing

https://doi.org/10.33022/ijcs.v14i4.4967

 The Indonesian Journal of Computer Science

https://doi.org/10.33022/ijcs.v14i4.4967 6202

during Releases 1 through 3 included only three metrics: total test cases, execution
time in days, and total execution time in hours. Starting from the initial release of
the application before Release 1, each regression testing cycle was allocated five
working days for two testers, totaling 80 person-hours. These five days were
typically divided into two phases: the first one to three days were used to test
modules affected by new features, while the remaining days were allocated for
regression testing of unaffected modules. The intended expectation was for the
entire process—including testing all available cases, reporting bugs to the
development team, and verifying the fixes—to fit within this five-day window.

As a result, the QA team needed to manage their time efficiently to ensure no
test cases were skipped. A contributing factor to this efficiency was the increasing
familiarity of the QA team with older test case workflows, allowing them to execute
those tests more quickly. However, as the number of test cases grew and new
features were continuously introduced, the QA team sometimes had to make
compromises to meet the time constraints. This typically involved prioritizing test
execution based on importance and complexity. Examples of test cases considered
“skippable” included hard-to-reproduce error flows or older modules that had never
failed and were assumed to be stable. In practice, this strategy proved unreliable
and often resulted in delayed releases, as bugs were only discovered after testing.

This study introduced an experimental hybrid testing approach in Releases
4 and 5, utilizing the same five-day time benchmark for manual testing. The initial
implementation took 36 hours over four weeks. Regression testing for Release 4 was
conducted after Phase 3, with code coverage recorded at approximately 8% and test
case coverage at 6.47%. A total of 65 test cases were written, requiring 34 hours of
test authoring. According to the QA team, these 65 test cases did not significantly
impact their manual testing workload; therefore, manual testing still required 80
hours. The total execution time for automated regression testing on these 65 test
cases was 37.89 seconds, comprising 32.775 seconds for test execution and 5.14
seconds for result integration. Overall, the total time spent on testing in Release 4
was approximately (36 + 34 + 80) hours + 37.89 seconds, or around 150 hours.

In comparison, the total time for Release 5 increased to 174 hours. This was
attributed to significant increases in initial implementation and test writing time,
which rose to 59 hours and 43 hours, respectively, over a five-week development
period. The initial implementation was extended to incorporate feedback that had
not yet been addressed in Release 4 and was refined to meet project requirements
fully. Test authoring time also remained relatively high, as new tests continued to be
added during the migration to automated testing. Despite this, manual testing time
was reduced to 72 hours. The QA team reported that one tester completed their
portion of testing a day earlier because automated tests covered some of their
assigned features. This indicated a noticeable impact of test automation by Release
5, with test case coverage reaching 14%. The total time for automated regression
testing of 168 test cases was 57.15 seconds, including 48.295 seconds for execution
and 5.97 seconds for result integration.

To support a long-term analysis, this study projected the performance of
regression testing if the next application release (Release 6) were conducted after
Phase 20, as shown in Table 3. The projection drew on data from the regression
testing automation experiment conducted in Phase 20 and the estimated duration

https://doi.org/10.33022/ijcs.v14i4.4967

 The Indonesian Journal of Computer Science

https://doi.org/10.33022/ijcs.v14i4.4967 6203

of manual testing provided by the quality assurance team. No further
implementation effort occurred beyond Phase 20, so the implementation cost was
assumed to be zero.

The execution time of automated regression testing was measured directly
from the test run in Phase 20, under the same conditions and implementation as
those of the previous releases. The total execution time was 78.61 seconds,
comprising 70.453 seconds for test execution and 8.08 seconds for result
integration. After the regression testing, optimization was applied by converting
arrays to sets for element lookups. As a result, the result integration time was
reduced to 4.38 seconds for 321 tests, making it even faster than the result
integration time recorded in Release 5.

According to estimates from the quality assurance team, the features already
covered by automated tests reduced manual testing time by two to three working
days for one tester. The testing allocation was adjusted to five days for tester one
and three days for tester two, totaling eight workdays or 64 person-hours. Based on
this projection, the total testing time dropped significantly to 106.5 hours.

Three long-term outcomes emerged from the application of automated
testing. First, the duration required to write new tests consistently decreased over
time and eventually stabilized at a lower threshold. This occurred because, once
tests were automated, no additional effort was needed aside from maintenance, and
the number of new tests only needed to accommodate newly added features.

Second, the execution time of automated tests remained within a minute's
range, even as code coverage increased. In Phase 20, 43% code coverage required
only 70 seconds (approximately one minute) to execute. Since the AM application
contained no use cases involving excessive iteration that could affect runtime, the
increase in code coverage was expected to remain within the same time range. This
indicated that the execution time of automated tests could be considered negligible
compared to the total regression testing duration, which was measured in hours.

Table 3. Projected Performance of Regression Testing Automation

Code Coverage (%)

Statements 43.57
Branch 39.1
Functions 38.7
Lines 43.63

Number of Automated Test Cases 321
Number of Test Cases 1199
Test Case Coverage (%) 26.77

costa

Va (hours) 0
Da (hours) 42.5
Ea (seconds) 70.45
Ra (seconds) 6.14
Total Ea, Ra (seconds) 4.38

costm
Em (days) 5
Em (hours) 64

Total Time (hours) 106.5

https://doi.org/10.33022/ijcs.v14i4.4967

 The Indonesian Journal of Computer Science

https://doi.org/10.33022/ijcs.v14i4.4967 6204

Figure 2. Illustration: Total Regression Testing Time in the Long Term

Third, the duration of manual testing steadily declined as the coverage of

automated testing increased. Although the total regression testing time could not be
definitively concluded in this study, it was expected to fall within one of two
outcome scenarios.

The first scenario represented an ideal condition in which the total
regression testing time stabilized at less than five days, as illustrated in Figure 2.
This scenario assumed minimal changes were introduced to existing features, and if
any changes did occur, they were not breaking changes. Automated tests that
replaced manual testing for these features remained relevant without requiring
intensive maintenance. As a result, the time contribution from automated testing
was minimal or could be disregarded in the overall time calculation.

The remaining time could then be used to reduce either the time allocation
or the resources required, for instance, by shortening the regression testing
schedule to three days or assigning only one tester to perform the regression testing.
This allowed the testing team's resources to be redirected toward more meaningful
tasks, rather than being focused solely on regression testing.

The second scenario is one in which the total time remains unchanged, as
illustrated in Figure 3. The assumption in this scenario is the worst-case situation
where development not only adds new functionality with each release but also
modifies existing functionality. In this case, tests become out of sync with the
product and require updates. The duration for writing tests remains high due to the
constant addition of features and intensive maintenance in each release.

At first glance, the impact of test automation may not appear significant
because the total time is “about the same” as manual testing. However, the second
scenario offers a different outcome than previous manual testing, where the five-
day window can now accommodate the entire regression testing process without
requiring compromises. With time made available from automated testing,
regression testing can complete all test cases earlier, allowing bugs to be identified
and fixed before the deadline. All the benefits presented in the second scenario also
apply to the first scenario.

https://doi.org/10.33022/ijcs.v14i4.4967

 The Indonesian Journal of Computer Science

https://doi.org/10.33022/ijcs.v14i4.4967 6205

Figure 3. Illustration: Long-Term Outcomes of Test Automation

The implication of the two scenarios above is that test automation can reduce

the risk of application release delays caused by regression testing. Even though the
number of features and tests will increase as development progresses, the
regression testing workload becomes more predictable and does not require
compromise. Future application releases can be carried out more regularly, with
shorter intervals compared to the previous release intervals that could stretch from
one to two months.

D. Conclusion

Motivated by real-world industrial needs, this study reports the experience of
transitioning from manual regression testing to automated regression testing for
one of the applications at PT. XYZ. Before the study, regression testing was
conducted manually, which was subjective and costly. Test automation was then
implemented as a means to enhance testing productivity and efficiency. This study
automated the test execution phase and integrated the results for the test analysis
phase. The preparation and implementation framework of test automation
described in this paper is expected to serve as a guideline for other industrial
applications with similar specifications that also intend to adopt test automation.

Over two months, this study developed more than 300 automated test cases and
executed regression testing for two application releases. The performance of the
automated testing was observed based on metrics such as code coverage,
productivity, and time-cost analysis. The results were then used to analyze the costs
and benefits of regression testing using the hybrid testing approach.

Experiments were conducted to find efficient alternatives for test execution by
splitting the CI pipeline into two types: the Feature pipeline, which runs only tests
related to recent changes (or a subset of tests), and the All pipeline, which runs all
tests. The analysis showed that the Feature pipeline is not suitable for changes that
involve core components or impact multiple tests simultaneously. However, it is
appropriate when the number of tests run is significantly smaller than the total test
count. Based on the tested application, the Feature pipeline only outperforms the All
pipeline in execution time if the test count difference exceeds 145. This is because
the Feature pipeline requires additional time to compare the source and target
branches in Git.

https://doi.org/10.33022/ijcs.v14i4.4967

 The Indonesian Journal of Computer Science

https://doi.org/10.33022/ijcs.v14i4.4967 6206

The findings of this study demonstrate that test automation has a tangible
impact on three aspects: regression testing, application releases, and the application
development workflow. First, the effect of automation was already evident in time
allocation (person-hours) at just 14% test case coverage, or 168 tests. In the long-
term analysis, test automation is projected to reduce the overall time required for
regression testing, or at least stabilize the total time, even as the application grows
and the number of tests increases. Second, automation can reduce the risk of release
delays caused by regression testing. As a result, application releases can be
scheduled more frequently and regularly. Lastly, automation can reduce the need
for manual regression testing for every code change while still ensuring the quality
of the developed product.

One limitation of this study is the short duration available for data collection. The
data was collected over two months, during which only two application releases
occurred. Therefore, the impact analysis of test automation was based on limited
data. A long-term analysis was conducted theoretically, presenting abstract
scenarios based on the testing team's domain knowledge and quantitative
projections from real-world experiments. Additionally, this study was scoped to the
AM application at PT. XYZ. Research in different contexts may yield different results.

Based on the research conducted, several suggestions can be made to improve
future studies. First, the study could be conducted over a more extended period or
applied to more application releases. The more data collected, the more concrete the
analysis becomes, which could potentially differ from the projected scenarios.
Second, future research could aim to implement end-to-end automation by
generating test cases automatically during the test design phase. While this would
broaden the scope and complexity of the study, it would also contribute significantly
to both academic and industrial fields related to test automation, which is still a
relatively new field. Lastly, future studies could enhance the test automation
artifacts or processes by exploring the latest conventions and alternatives.

E. Acknowledgment

The author would like to express sincere gratitude to The Company for
providing access to the necessary data and resources that made this research
possible. Special thanks are also extended to the Computer Systems Laboratory
(CSL) for their continuous support, guidance, and facilities throughout this study.

F. References
[1] Hasnain, M., Pasha, M. F., Ghani, I., & Jeong, S. R. “Functional requirement-based

test case prioritization in regression testing: a systematic literature review,”
SN Computer Science, vol. 2, issue 6, pp. 421. 2021.

[2] Akin, A., Sentürk, S., & Garousi, V. “Transitioning from Manual to Automated
Software Regression Testing: Experience from the Banking Domain,” In
Proceedings of the 2018 25th Asia-Pacific Software Engineering Conference
(APSEC), pp. 591-597, 2018.

[3] Sawant, P. D. “Test Case Prioritization for Regression Testing Using Machine
Learning.” In Proceedings of the 2024 IEEE International Conference on
Artificial Intelligence Testing (AITest), pp. 152-153, 2024.

https://doi.org/10.33022/ijcs.v14i4.4967

 The Indonesian Journal of Computer Science

https://doi.org/10.33022/ijcs.v14i4.4967 6207

[4] Kandil, P., Moussa, S., & Badr, N. “A Study for Regression Testing Techniques
and Tools,” International Journal of Soft Computing and Software Engineering,
vol. 5, pp. 64-84, 2015.

[5] Homès, B. Fundamentals of software testing. John Wiley & Sons, 2024.
[6] Corradini, D., Zampieri, A., Pasqua, M., Viglianisi, E., Dallago, M., & Ceccato, M.

“Automated black‐box testing of nominal and error scenarios in RESTful APIs,”
Software Testing, Verification and Reliability, vol. 32, issue 5, e1808, 2022.

[7] Ramler, R., & Wolfmaier, K. “Economic Perspectives in Test Automation:
Balancing Automated and Manual Testing with Opportunity Cost,” In
Proceedings of the 2006 International Workshop on Automation of Software
Test, pp. 85-91, 2006.

[8] Rosero, R. H., Gómez, O. S., & Rodriguez, G. “15 Years of Software Regression
Testing Techniques -- A Survey,” International Journal of Software Engineering
and Knowledge Engineering, vol. 26, pp. 675-689, 2016.

[9] Thant, K. S., & Tin, H. H. K. “The impact of manual and automatic testing on
software testing efficiency and effectiveness,” Indian Journal of Science and
Research, vol. 3, issue 3, pp. 88-93, 2023.

[10] Haas, R., Nömmer, R., Juergens, E., & Apel, S. “Optimization of automated and
manual software tests in industrial practice: A survey and historical analysis,”
IEEE Transactions on Software Engineering, vol. 50, issue 8, pp. 2005-2020,
2024

[11] Sharma, R. M. “Quantitative Analysis of Automation and Manual Testing,”
International Journal of Engineering and Innovative Technology, vol. 4, issue 1,
pp. 252-257, 2014.

[12] Baltes, S., & Ralph, P. “Sampling in software engineering research: A critical
review and guidelines,” Empirical Software Engineering, vol. 27, issue 4, pp. 94,
2022.

[13] Guevara-Vega, C., Bernárdez, B., Durán, A., Quina-Mera, A., Cruz, M., & Ruiz-
Cortés, A. “Empirical strategies in software engineering research: A literature
survey,” In Proceedings of the 2021 Second International Conference on
Information Systems and Software Technologies (ICI2ST), pp. 120-127, 2021.

[14] Kothari, C. R. Research methodology: Methods and techniques (2nd ed.). New
Age International (P) Limited, 2004.

[15] Wu, M., Dong, W., Zhao, Q., Pan, Z., & Hua, B. “An Empirical Study of Lightweight
JavaScript Engines,” In Proceedings of the 2023 IEEE 23rd International
Conference on Software Quality, Reliability, and Security Companion (QRS-C),
pp. 413-422, 2023.

[16] Chen, Y. “NodeSRT: A Selective Regression Testing Tool for Node.js
Application,” In Proceedings of the 2021 IEEE/ACM 43rd International
Conference on Software Engineering: Companion Proceedings (ICSE-
Companion), pp. 126-128, 2021.

[17] Bandyopadhyay, B. A Comprehensive Study on Code Coverage Analysis for
Effective Test Development/Enhancement Methodology. American Journal of
Science & Engineering, vol. 3, issue 2, pp. 31-36, 2022.

[18] O'Regan, G. Concise Guide to Software Engineering: From Fundamentals to
Application Methods. Springer International Publishing, 2017.

https://doi.org/10.33022/ijcs.v14i4.4967

