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Mobile	 Edge	 Computing	 (MEC)	 networks	 are	 emerging	 technologies	
transforming	 how	 data	 is	 processed,	 stored,	 and	 delivered	 at	 the	 edge	
network,	 enhancing	 performance	 and	 reducing	 latency.	 However,	 the	
technology	introduces	significant	cybersecurity	challenges,	specifically	Man-
in-the-Middle	(MitM)	attacks.	These	attacks	compromise	sensitive	data	and	
can	disrupt	normal	services.	This	study	proposes	a	robust	detection	scheme	
based	 on	 Bayesian	 Dynamic	 Stackelberg	 Game	 Theory	 to	 address	 these	
vulnerabilities.	 By	 incorporating	Bayesian	 inference,	 the	 scheme	 considers	
uncertainties	 in	 the	 attacker’s	 behaviour	 and	 the	 network	 environment,	
enabling	the	defender	to	update	its	strategies	dynamically	based	on	observed	
actions.	The	simulation	results	show	that	the	proposed	scheme	significantly	
improves	 the	 detection	 scheme	 for	 MitM	 attacks	 in	 MEC	 networks,	
outperforming	other	schemes	considered	in	the	study.	The	findings	show	that	
integrating	 Game	 Theory	 with	 Bayesian	 analysis	 provides	 a	 promising	
approach	for	developing	adaptive	and	resilient	cybersecurity	strategies	in	the	
evolving	landscape	of	edge	computing.	
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A. Introduction	
The	 advancement	 of	 technology	 has	 brought	 about	many	 challenges.	 Cloud	

computing	has	been	considered	the	future	as	 it	provides	advantages	such	as	cost	
efficiency,	 scalability,	 flexibility,	 and	 security	 assurance	 [1].	 However,	 due	 to	 the	
dynamic	and	broad	nature	of	the	services	provided	by	the	cloud,	it	faces	challenges	
that	concern	consumers,	relating	to	integrity,	availability,	and	confidentiality	of	data.	
Despite	 the	benefits,	 it	 is	also	susceptible	 to	challenges	such	as	downtime	due	 to	
Internet	 connectivity	 issues,	 data	 privacy,	 security	 breaches,	 limited	 control,	
compliance	issues,	and	management	costs	[2].	

	To	 address	 these	 challenges,	Mobile	 Edge	 Computing	 (MEC)	 emerged	 as	 a	
promising	 solution	 to	 offload	 the	 load	 of	 the	 centralized	 cloud	 by	 bringing	 data	
closer	to	the	source	for	efficient	data	processing,	storage,	lower	connectivity	costs,	
and	reliable	and	uninterrupted	connection	[3].	MEC	is	broadly	classified	into	public	
and	private	MEC,	as	shown	in	Fig.	1.	The	public	MEC	applies	across	deployments	
with	 broad	 geographic	 coverage	 and	 time-sensitive	 applications	with	 a	 need	 for	
ultra-low	 latency,	 such	 as	 public	 safety,	 healthcare,	 and	 autonomous	 vehicles.	
Private	MEC,	on	the	other	hand,	is	tailored	for	localized	use	cases	in	conjunction	with	
edge	infrastructure	and	Radio	Access	Network	(RAN)	technologies,	enabling	secure,	
high-performance	solutions	for	specific	industries	or	enterprises	[4].	

	

	
Figure	1.	Mobile	Edge	Computing	[4]	

	
MEC	technology	has	revolutionalized	how	digital	data	is	handled	and	processed.	

However,	MEC	systems	are	susceptible	to	complex	security	challenges	that	require	
new	 approaches	 to	 adapt	 to	 the	 advancement	 of	 technology.	 This	 study	 aims	 to	
develop	 a	 robust	 Manin-the-Middle	 (MitM)	 adaptive	 detection	 scheme	 that	
minimizes	high	false	positives.	MitM	attacks	are	common	and	continue	to	evolve	and	
become	more	sophisticated.	The	 literature	shows	 that	 limitations	related	 to	 false	
positives	dissipate	time	and	consume	resources,	causing	unnecessary	disruptions	
when	attacks	 remain	undetected	 [5].	However,	 false	negatives	allow	attackers	 to	
compromise	a	network	and	sensitive	data	or	disrupt	the	system.	This	study	employs	
the	Stackelberg	Game	Theory	to	model	2	the	proposed	MitM	detection	scheme	by	
modeling	 the	 defender-attacker	 interaction.	Heinrich	 Freiherr	 von	 Stackelberg,	 a	
German	economist,	introduced	the	Stackelberg	game	theory	in	1934	[6].	Using	this	
framework,	 the	 study	 contributes	 to	 the	 body	 of	 knowledge	 by	 developing	 an	
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effective	 detection	 scheme	 that	 can	 adapt	 to	 evolving	 attacker	 strategies	 and	
improve	detection	capabilities	over	time.	
	

1. Related	Work	
The	study	in	[4]	focused	on	distributed	fog	computing	to	minimize	the	reliance	

on	 the	 cloud	 for	 resource-intensive	 tasks,	 thereby	 improving	 performance	 and	
minimize	 latency.	 However,	 fog	 computing	 faces	 significant	 security	 challenges.		
Specifically,	 the	 study	 addresses	MitM	 attacks	 on	 the	 fog	 layer	 and	 proposes	 an	
Anomaly-based	Intrusion	Detection	and	Prevention	System	(IDPS)	to	counter	MitM	
attacks.	The	study	used	the	exponentially	weighted	moving	average	(EWMA),	and	
the	simulation	results	show	that	the	scheme	can	achieve	an	accuracy	between	80%	
and	 95%	 percent.	 However,	 the	 proposed	 scheme	 highlighted	 the	 challenges	 of	
increased	 latency;	 hence,	 new	 approaches	 are	 required	 to	 address	 the	 latency	
problem.	 Latency	 significantly	 impacts	 network	 performance,	 increases	 energy	
consumption,	and	has	security	implications.	

The	study	in	[7]	examined	the	MEC,	which	enables	offloading	latency-sensitive	
applications.	It	proposed	a	SecEdge-Learn	Architecture	that	uses	deep	learning	and	
blockchain	 to	 store	data	 from	MEC	 clusters.	 This	 allows	deep	 learning	 to	 handle	
attack	scenarios	differently.	This	is	done	to	address	the	limitations	of	the	machine	
learning	model’s	limited	accuracy	and	the	scalability	for	real-time	attack	detection	
across	 distributed	 edge	 nodes.	 A	 more	 systematic	 and	 theoretical	 analysis	 is	
required	 to	 explore	 lightweight	models	 that	 can	 execute	 efficiently	 with	 limited	
resources.	 Such	 a	 model	 should	 be	 flexible	 and	 adaptable	 to	 cyberattacks	 and	
evolving	threat	landscapes.	

The	study	in	[8]	addresses	the	security	challenges	of	the	Industrial	Internet	of	
Things	(IIoT)	 that	use	pervasive	edge	computing	 for	data	processing	at	 the	edge,	
minimal	response	time,	and	resource	limitations.	The	study	proposed	a	secure	and	
intelligent	communication	scheme	using	a	parallel	Artificial	Bee	Colony	(ABC)	(an	
optimization	technique	that	can	explore	and	exploit	large	search	spaces)	algorithm.	
A	more	systematic	and	theoretical	analysis	may	be	required;	furthermore,	it	needs	
to	be	clarified	whether	the	scheme’s	scalability	in	large-scale	IoT	networks	and	the	
overhead	 of	 job	 migration	 and	 load	 balancing	 have	 an	 impact	 on	 the	 network	
performance.	 Our	 study	 aims	 to	 improve	 the	 Sybil	 attack	 detection	 and	 explore	
alternative	optimization	algorithms.	

MEC	decentralizes	computational	data	sources,	providing	minimized	latency	
while	maximizing	the	throughput.	The	study	in	[9]	proposed	a	Resource	Allocation	
and	Pricing	(RAP)-MEC	innovative	technique	to	 improve	software	quality	using	a	
session	 key	 for	 encryption	 purposes	 and	 the	 simulation	 results	 show	 that	 the	
scheme	minimizes	the	communication	costs	by	at	least	24.85%	to	72.73%	and	its	
run	 time	 from	 34.66%	 3	 to	 76.64%.	 However,	 the	 complexity	 of	 the	 proposed	
scheme	may	 lead	 to	 implementation	 challenges	 and	 its	 dependence	 on	 physical	
unclonable	 functions,	 which	 might	 be	 vulnerable	 to	 security	 attacks.	 Further	
investigation	may	be	 required	 to	 explore	 security	 techniques	 to	 complement	 the	
RAP-MEC’s	existing	measures.	

The	study	in	[10]	focused	on	the	vulnerability	of	the	Internet	of	Medical	Things	
(IoMT),	 which	 is	 susceptible	 to	 MitM	 attacks.	 Such	 attacks	 can	 compromise	 the	
health	 and	 safety	 of	 patients.	 They	 cause	 issues	 in	 identifying	 healthcare	
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emergencies	and	disrupt	the	remote	healthcare	monitoring	system	operations.	The	
proposed	Framework	is	designed	to	prevent	MitM	attacks	and	ensure	secure	data	
transmission	in	the	IoMT	devices.	The	experimental	results	prove	that	the	scheme	
achieved	a	higher	detection	accuracy	for	emergency	detection	and	could	minimize	
the	false	alarm	rate	by	at	least	3%.	The	study	is	based	on	Received	Signal	Strength	
Indicator	 (RSSI)-based	 key	 derivation,	 which	might	 be	 vulnerable	 to	 attacks.	 To	
address	 this	 challenge,	 other	 methods	 for	 key	 derivation	 may	 be	 explored	 to	
improve	the	security	of	the	network.	

	
2. Theoretical	Foundation	
	 MitM	attacks	pose	a	significant	threat	to	the	security	of	the	networks.	Attackers	
can	intercept	and	manipulate	sensitive	data.	The	traditional	schemes	often	rely	on	
signature-based	approaches,	which	must	be	optimized	 for	 the	evolving	nature	of	
MitM	 attacks.	 The	 Game	 theory	 framework	 was	 used	 to	 model	 the	 interactions	
between	 attackers	 and	 defenders	 (detection	 scheme).	 The	 model	 enables	 the	
development	of	more	proactive	and	adaptive	defense	detection	schemes.	This	study	
focuses	on	the	Stackelberg	game	theory,	named	after	the	German	economist	in	1934.	
The	model	has	been	applied	in	various	anomaly	detection	studies,	especially	in	areas	
with	high-dimensional	big	data	[11].	
	 The	application	of	the	Stackelberg	game	theory	aims	to	optimize	the	developed	
detection	 scheme	 by	 dynamically	 adjusting	 to	 the	 adversary’s	 actions.	 The	
framework	enhances	the	development	of	a	more	robust	anomaly	detection	scheme	
that	can	adapt	to	potential	threats	such	as	MitM	attacks,	advanced	persistent	threats,	
and	zero-day	attacks.	Bayesian	Stackelberg	is	a	powerful	tool	for	designing	robust	
anomaly	 detection	 focusing	 on	 network	 scenarios	 with	 uncertainty	 about	 the	
attacker’s	behaviour.	In	the	Bayesian	Stackelberg,	a	defender	and	an	attacker	have	
private	data	about	types	or	states.	The	defender	first	commits	to	a	strategy	while	
considering	the	possible	types	of	the	attacker.	The	attacker	then	responds	optimally	
based	 on	 the	 defender’s	 state	 and	 the	 attacker’s	 observed	 state.	 In	 the	 dynamic	
Stackelberg,	the	strategic	interaction	between	the	defender	and	the	attacker	takes	
over	multiple	periods.	The	dynamic	Stackelberg	reflects	various	benefits,	 such	as	
being	realistic	for	modeling	situations	where	decisions	are	made	over	time.	It	has	a	
strategic	adaptation	to	the	evolving	state	of	the	game.	
	

3. Bayesian	Dynamic	Stackelberg	Game	Theory	
	 Integrating	the	Bayesian	and	Dynamic	Stackelberg	Game	Theory	is	a	promising	
solution	 to	model	 the	uncertainty	 of	 an	 evolving	 environment.	 In	 cyber	 security,	
especially	the	MitM	attack,	the	integrated	approach	proves	to	be	viable	where	the	
defender	starts	with	initial	beliefs	about	potential	threats	of	the	MitM	attack.	The	
defender	 monitors	 the	 network	 traffic	 and	 updates	 their	 beliefs	 based	 on	 the	
observed	anomalies,	such	as	unusual	flow	data	patterns	and	the	changes	occurring	
in	routing	[12].	
	

3.1 State	variables	and	dynamics	
	 Let	𝑥(𝑡)	 determine	 the	 system’s	 state	 at	 time	 t	 in	 a	 dynamic	 setting.	 The	
dynamics	govern	the	evolution	of	this	state:	
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Σ 

	
𝑥̇(𝑡) 	= 	𝑓(𝑥(𝑡), 𝑢𝐿(𝑡), 𝑢𝐹(𝑡), θ)		 	 	 	 	 	

	 				(1)	
	 Where:		
•	𝑢𝐿(𝑡)	is	the	defender’s	control	at	time	𝑡,		
•	𝑢𝐹(𝑡)	is	the	attacker’s	control	at	time	𝑡,		
•	𝜃	is	the	defender’s	type,	which	is	not	directly	observed	by	the	leader,	and		
•	𝑓(·)	describes	how	the	state	𝑥(𝑡)	changes	over	time.	
	

3.2 Bayesian	beliefs	
	 The	defender	does	not	know	 the	exact	 type	𝜃	 of	 the	attacker	but	has	a	belief	
represented	 by	 a	 probability	 distribution	 𝑝(𝜃).	 As	 the	 game	 progresses,	 the	
defender	observes	the	attacker’s	actions	𝑢𝐹(𝑡)	and	updates	its	belief	function	using	
Bayesian	updating.	Given	the	prior	belief	𝑝(𝜃)	and	the	observation	of	the	follower’s	
action	𝑢𝐹(𝑡),	the	posterior	belief	is	updated	using	Bayes’	theorem	as	follows:	
	

	 	 𝑃(𝜃|𝑢𝐹(𝑡))	=	!(#$(%)|()	*(()
!(#$(%))

	 	 	 	 	 (2)	
	

	 where:		
•	𝑃(𝑢𝐹(𝑡)|𝜃)	is	the	likelihood	of	observing	the	follower’s	action	𝑢𝐹(𝑡)	given	type	𝜃,		
•	𝑝(𝜃)	is	the	prior	belief	about	the	attacker’s	type	𝜃,		
•	𝑃(𝑢𝐹(𝑡))	is	the	marginal	probability	of	observing	the	action	𝑢𝐹(𝑡),	computed	as:	
	
	

P	(uF	(t))	=	 P	(uF	(t)|θ′)	·	p(θ′)	 	 	 	 	 (3)	
																						θ′	

	 This	ensures	 that	 the	posterior	belief	𝑃(𝜃|𝑢𝐹(𝑡))	 is	properly	normalized	as	a	
probability	distribution	over	the	types	𝜃.	
	

3.3 Defender’s	objective	function	
	 The	 defender	 aims	 to	 maximize	 its	 expected	 payoff	 over	 the	 entire	 period,	
considering	the	system’s	dynamic	evolution	and	updated	beliefs	about	the	attacker’s	
type.	Hence,	 the	defender’s	objective	 function	 in	a	Bayesian	Dynamic	Stackelberg	
game	can	be	expressed	as:		
	
𝑢𝐿(𝑡)𝑚𝑎𝑥𝐸𝜃[𝐽𝐿]	=	9∫ 𝑔𝐿(𝑥(𝑡), 𝑢𝐿(𝑡), 𝑢 ∗ 𝐹(𝑡), θ)dt	 + 	hL(x(T), θ)	+

, D	 	 (4)	
		
•	 𝑔𝐿(𝑥(𝑡), 𝑢𝐿(𝑡), 𝑢 ∗ 	(𝑡), 𝜃)	is	the	running	payoff	of	the	defender	at	time	𝑡,	
•	 ℎ𝐿(𝑥(𝑇	), 𝜃)	is	the	terminal	payoff	at	the	final	time	𝑇	,	
•	 𝐸𝜃[·]	denotes	the	expectation	concerning	the	defender’s	belief	about	the	
		 attacker’s	type	𝜃,	
•	 𝑈 ∗ 𝐹(𝑡)	 is	 the	 attacker’s	 best	 response	 at	 time	𝑡,	 given	 their	 type	𝜃	 and	 the	
defender’s	strategy.	 	
	

3.4 Defender’s	optimization	problem	
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	 The	 attacker	 observes	 the	 defender’s	 strategy	𝑢𝐿(𝑡)	 and	 optimizes	 its	 payoff	
given	its	type	𝜃.	The	attacker’s	optimal	strategy	𝑢 ∗ 𝐹(𝑡)	is	given	by:	
	
𝑈 ∗ 𝐹(𝑡)	=	𝑎𝑟𝑔	𝑚𝑎𝑥(𝑢𝐹(𝑡))	9∫ 𝑔𝐹(𝑥(𝑡), 𝑢𝐿(𝑡), 𝑢𝐹(𝑡), θ)	dt	 + 	hF(x(T), θ)	+

, D				(5)	
	
Where:		
	

• 𝑔𝐹	(𝑥(𝑡), 𝑢𝐿(𝑡), 𝑢𝐹	(𝑡), 𝜃)	is	the	running	payoff	of	the	attacker	(follower)	at	
time	𝑡,		

• ℎ𝐹	(𝑥(𝑇), 𝜃)	is	the	terminal	payoff	of	the	attacker	at	the	final	time	𝑇,		
• 𝑢𝐿(𝑡)	is	the	defender’s	control	strategy	observed	by	the	attacker,		
• 𝜃	represents	the	attacker’s	type,	influencing	its	payoffs.	

	 	
The	attacker’s	strategy	𝑢	 ∗ 	𝐹	(𝑡)	maximizes	 its	total	expected	payoff	over	the	

time	interval	[0, 𝑇],	based	on	the	current	state	𝑥(𝑡),	the	observed	defender’s	strategy	
𝑢𝐿(𝑡),	and	its	type	𝜃.	

	
4. Bayesian	Dynamic	Stackelberg	Game	Theory	
	
Table	1	is	the	structure	of	the	Bayesian	dynamic	Stackelberg	theory	approach	for	

detecting	and	responding	to	anomalies.	The	algorithm	begins	with	data	collection,	
preprocessing	the	data	to	check	imbalance	data,	errors,	and	missing	values,	and	is	
used	to	train	the	anomaly	detection	model.	All	the	detected	anomalies	will	trigger	
an	 alert,	 allowing	necessary	 actions	 to	 be	 taken.	 The	 algorithm	 incorporated	 the	
Bayesian	Framework	to	update	beliefs	about	the	attacker’s	behaviour	over	time.	The	
algorithm	 observes	 the	 attacker’s	 actions	 in	 every	 epoch	 using	 the	 Bayesian	
inference	and	thus	optimizes	the	defender’s	strategy	accordingly.	The	system’s	state	
will	 be	dynamically	updated	based	on	 the	defender’s	 optimized	 strategy	 and	 the	
attacker’s	 response,	 thereby	 continually	 refining	 the	 defense	mechanism.	 All	 the	
generated	alerts	will	be	displayed,	providing	real-time	feedback	about	the	potential	
threats.	

	
Algorithm	1	Proposed	Algorithm	
1:		data	=	collect_data()	
2:		preprocessed_data	=	preprocess_data(data)	
3:		anomaly_model	=	train_anomaly_model(preprocessed_data)	
4:		anomalies	=	detect_anomalies(anomaly_model,	preprocessed_data)	
5:		alerts	=	generate_alerts(anomalies)	
6:		prior_p_theta	=	initial_belief()	
7:		for	t	=	1	to	T	do	
8:		uf_t	=	observed_attacker_action()	
9:		p_uf_	given_theta	=	likelihood_of_action_	given	type(uf_t,	prior_p_theta)	
10:		posterior_p_theta	=	bayesian_update(prior_p_theta,	uf_t,	p_uf	given_theta)	
11:		uL_t	=	optimize	defender	strategy(x_t,	posterior_p_theta)	
12:		uF_star_t	=	attacker	response(x_t,	uL_t,	posterior_p_theta)	
13:		x_t	=	state	dynamics(x_t,	uL_t,	uF_start,	posterior_p_theta)	
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14:		end	for	
15:		for	alert	in	alerts	do	
16:		print(alert)	
17:		end	for	
	

5. Simulation	Results	
	

5.1 ARP-SDN	dataset	
	
The	 Address	 Resolution	 Protocol—Software	 Defined	 Network	 (ARP-SDN)	

dataset	used	in	this	study	is	publicly	available	and	downloaded	from	the	Kaggle	
database.	The	dataset	classifies	network	traffic	with	features	that	include	normal	
and	malicious	 behaviour.	 Fig.	 2	 shows	 the	 traffic	 classification.	 The	 data	 has	
about	15	thousand	normal	traffic	and	13	thousand	malicious	traffic,	as	depicted	
in	Figure	2.	

Figure	2.	Normal	and	malicious	traffic	classification	
	

In	this	section,	the	study	discusses	the	approaches	taken	to	implement	the	
proposed	scheme.	The	detection	scheme	was	implemented	in	Google	Collab,	and	
the	dataset	was	 split	 into	70%	 training	 and	30%	 testing	 [13].	 The	proposed	
scheme	 was	 trained	 using	 the	 Random	 Forest	 (RF)	 for	 the	 classification	 of	
network	traffic	as	either	standard	or	malicious.	The	algorithm	uses	the	Bayesian	
to	 update	 the	 beliefs	 about	 the	 attacker’s	 type,	 based	 on	 the	 observed	
anomalies	 and	 then	 uses	 the	 Stackelberg	 Game	 framework	 to	 compute	 the	
optimal	 strategies	 for	 both	 the	 defender	 and	 the	 attacker	 by	 utilizing	 the	
updated	beliefs.	
We	preprocessed	the	data	to	ensure	accuracy	and	consistency.	Normal	data	

has	missing	values,	inaccuracies,	or	imbalanced	data	that	should	be	corrected	
to	improve	quality.	The	dataset	consists	of	115	features,	and	a	filter-based	was	
used	to	select	only	features	relevant	to	the	study	and	to	increase	the	prediction	
accuracy	of	the	algorithms	used.	After	updating	the	beliefs	using	the	Bayesian	
updat-	 ing,	 we	 calculated	 the	 Stackelberg	 equilibrium,	 which	 enhances	 the	
accuracy	detection	for	the	proposed	scheme,	such	as	anticipating	the	attackers’	
behavior,	 robustness	 anal-	 ysis,	 and	 the	 optimal	 defense	 strategy.	 We	 also	
computed	the	regret	metric	to	ensure	efficient	resource	utilization.	
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Fig.	 3	 shows	 the	 convergence	 of	 beliefs	 over	 time	 for	 the	 proposed	 model.	

The	 results	 indicate	 that	 the	 convergence	 metric	 changes	 over	 time,	 sharply	
decreasing	before	 s t a b i l i z i n g as	time	progresses.	Fig.	4	demonstrates	that	
the	 proposed	 model	 achieved	 a	 stable	 accuracy	 of	 100%	 over	 the	 number	 of	
iterations	the	simulation	was	executed.	
	

	
	

Figure	3.	Convergence	of	beliefs	over	time	
	

	
Figure	4.	Accuracy	over	time	
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In	Fig	5,	the	results	show	that	the	defenders	regret	initially	increase	as	the	

convergence	 metric	 decreases.	 This	 is	 due	 to	 the	 defender	 experimenting	 with	
different	strategies	to	counter	the	attacker’s	moves.	During	this	phase,	the	defender	
tries	to	determine	the	most	effective	defense	mechanisms,	leading	to	higher	regret	
as	suboptimal	strategies	are	tested.	Once	the	defender	establishes	a	more	effective	
strategy	 or	 adapts	 to	 the	 attacker’s	 tactics,	 the	 regret	 stabilizes,	 indicating	 an	
adaptation	or	learning	process.	
	

	
Figure	5.	Posturing	results	over	time	

	
In	Fig.	6,	when	the	attacker’s	regret	remains	 low,	 the	attacker	 learns	 from	

past	 actions	 and	 adjusts	 its	 strategy	 accordingly.	 A	 stable	 strategy	 over	 time	
indicates	that	the	attacker	has	found	a	reliable	approach	that	works	well	in	the	given	
environment.	 This	 stability	 arises	 because	 the	 attacker	 possesses	 a	 deep	
understanding	 of	 the	 system	 they	 are	 targeting,	 enabling	 them	 to	 anticipate	 the	
system’s	 responses	 and	 accurately	 predict	 the	 outcomes	 of	 their	 actions.	 This	
knowledge	allows	the	attacker	to	exe-	cute	well-planned,	consistent	strategies	that	
minimize	unpredictability	and	maximize	the	effectiveness	of	their	attacks.	While	the	
attacker’s	regret	remains	low,	indicating	various	dynamics	in	making	decisions	or	a	
stable	strategy	over	time.	
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Figure	6.	Regret	over	time	results	
	

Fig.	7	illustrates	the	game	theory	that	visualizes	the	interaction	between	two	
parties	labeled	as	the	defender,	the	attacker,	and	its	payoff	matrix.	The	figure	shows	
the	 surfaces	 (purple	 and	 blue)	 which	 represent	 various	 outcomes	 based	 on	 the	
strategies	of	the	defender	and	the	attacker	[9].	The	figure	helps	us	to	understand	
how	strategies	impact	their	payoff,	which	is	crucial	in	cybersecurity.	By	analyzing	
these	surfaces,	we	can	 identify	optimal	strategies	 for	both	parties,	enabling	us	 to	
effectively	predict	and	mitigate	potential	cyber	threats.	
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Figure	7.	Decision	analysis	between	the	defender	and	the	attacker’s	action.	

	
Table	 1	 records	 the	 outcomes	 of	 the	 Bayesian	 Dynamic	 Stackelberg	 game	

theory	as	 our	 proposed	 model	 and	 other	 algorithms	 used	 in	 our	 study.	 We	 ran	
the	 simulation	five	times	to	observe	the	changes	over	time	between	the	algorithms.	
The	decision	tree	 and	the	Support	Vector	Machine	algorithms	were	also	modeled	
using	 the	 Stackelberg	 Game	 Theory,	 and	 the	 results	 were	 generated.	 It	 can	 be	
observed	in	Table	1	that	the	proposed	scheme	outperformed	both	the	Decision	Tree	
and	SVM	schemes	over	time.	 Table	1	also	depicts	the	recall,	precision,	and	F1-score	
metrics,	indicating	that	the	 proposed	 scheme	 outperformed	 the	Decision	 tree	 and	
SVM	 schemes.	
The	proposed	scheme	achieved	a	higher	precision	than	the	Decision	tree	and	

SVM	scheme,	indicating	that	the	scheme	does	not	incur	many	false	positives.	The	
higher	recall	means	that	the	scheme	correctly	detected	most	events	positively.	
Finally,	 the	 proposed	 scheme	 achieved	 good	 results	 because	 it	 captures	 the	
balance	between	preci-	sion	and	makes	informed	decisions	about	the	scheme’s	
predictions	about	the	defender	and	the	attacker’s	actions	over	time.	

	
Table	1.	Model	Performance	Comparison	

Iteration	 Model	 Metrics	
	 	 Precision	 Recall	 F1-score	 Accuracy	 Cross-

validate	
1	 Proposed	

Model	
0.997806	 0.997675	 0.997739	 0.997751	 0.997278	

2	 Proposed	
Model	

0.997692	 0.997524	 0.997606	 0.997618	 0.996692	

3	 Proposed	
Model	

0.996585	 0.996245	 0.996409	 0.996428	 0.996630	

4	 Proposed	
Model	

0.997387	 0.997193	 0.997288	 0.997301	 0.995951	
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5	 Proposed	
Model	

0.995479	 0.995086	 0.995273	 0.995293	 0.995368	

	
1	 Decision	Tree	 0.991059	 0.991066	 0.991062	 0.991097	 0.991134	
2	 Decision	

Tree	
0.988095	 0.995370	 0.988749	 0.994044	 0.989411	

3	 Decision	
Tree	

0.992972	 0.992935	 0.992954	 0.992988	 0.991862	

4	 Decision	
Tree	

0.993525	 0.993557	 0.993541	 0.993569	 0.992696	

5	 Decision	
Tree	

0.990019	 0.990258	 0.990135	 0.990176	 0.989679	

	
1	 SVM	 0.982682	 0.980782	 0.981577	 0.981691	 0.974791	
2	 SVM	 0.976191	 0.976190	 0.975198	 0.976166	 0.970208	
3	 SVM	 0.984747	 0.983785	 0.984216	 0.984293	 0.985179	
4	 SVM	 0.987038	 0.986519	 0.986765	 0.986835	 0.986601	
5	 SVM	 0.988591	 0.988602	 0.988597	 0.988647	 0.987536	

	
Fig.	 8	 presents	 the	 accuracy	 results.	 We	 can	 observe	 that	 the	 proposed	

model	was	able	to	predict	accurately.	This	improves	the	reliability	of	the	scheme	
for	 threat	 detection,	 data	 analysis,	 and	 decision-making.	 The	 Support	 Vector	
Machine	had	a	 steep	drop,	and	then	it	increased,	indicating	that	all	the	schemes	
performed	 better,	 with	 the	 proposed	 scheme	 being	 superior.	 The	 proposed	
model	consistently	performs	well,	maintaining	a	score	of	at	least	99.5%	across	
all	 iterations	 due	 to	 robust	 feature	 selection,	 effective	 preprocessing,	 and	
advanced	algorithm	design.	Additionally,	high-	quality	training	data	and	careful	
hyperparameter	 tuning	 further	 enhance	 its	 ability	 to	 generalize	 and	 deliver	
stable,	 accurate	 results.	 Fig.	 9	 is	 the	 validation	of	 the	proposed	model,	which	
provides	a	more	accurate	estimate	of	how	the	model	performs	in	the	real-	world.	
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Figure	8.	Accuracy	results	

	
Figure	9.	Cross-validation	results	

	
5.2 Scenario	2	

The	study	also	used	the	HIKARI	Network	Intrusion	dataset.	The	dataset	is	
based	on	real	and	encrypted	synthetic	attack	traffic	and	was	generated	to	provide	
a	comprehen-	 sive	understanding	of	network	intrusion.	The	dataset	has	555	278	
instances,	of	which	 93.2%	 (517582)	 are	 normal	 traffic	 while	 6.8%	 (37696)	 are	
malicious	 traffic,	 as	 shown	in	Fig.	 10	 [14].	
	

	
Figure10.	Dataset	traffic	classification	[14]	
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The	simulation	results	show	that	the	proposed	model	is	performing	well,	
achieving	 an	 accuracy	 of	 100%	 and	 a	 cross-validation	 score	 of	 0.999979.	 In	
Table	1,	we	can	observe	 that,	while	 utilizing	 the	ARP-SDN	dataset,	 the	model	
performed	 well	 with	an	accuracy	of	0.997751	and	a	cross-validation	score	of	
0.997278.	Hence,	there	is	an	improvement	of	0.002721	accuracy	and	0.002701	
in	cross-validation.	The	performance	is	maintained	because	the	model	is	likely	
well-generalized,	meaning	it	effectively	captures	the	underlying	patterns	in	the	
data	without	overfitting	specific	datasets.	This	robustness	is	achieved	through	
comprehensive	 preprocessing,	 representative	 training	 data,	 and	 a	 well-
designed	algorithm	capable	of	adapting	to	variations	in	the	datasets.	

Fig.	11	shows	the	results	of	the	proposed	model’s	regret	over	time	for	the	
defender	and	the	attacker.	The	figure	shows	that	the	defender	and	the	attacker	
start	with	a	low	regret	and	gradually	increase,	but	they	become	more	constant,	
close	to	the	maximum	possible	regret	(around	20).	The	results	imply	that	since	
the	regret	is	not	increasing,	the	defender’s	strategy	is	effective	over	time,	as	the	
regret	does	not	increase	beyond	a	certain	point.	

	
Figure	11.	Proposed	Model	regret	over	time	

	
6. Conclusion		

In	this	study,	we	developed	a	robust	detection	scheme	and	utilized	a	Bayesian	
Dynamic	Stackelberg	game	theory	to	model	and	mitigate	MitM	attacks	in	MEC.	
The	study	modeled	the	interactions	between	defenders	and	attackers	to	counter	
cyber	 threats	 by	 anticipating	 the	 defender’s	 and	 attacker’s	 actions.	 The	
simulation	results	show	that	 the	game	framework	approach	could	predict	the	
defender	 and	 the	 attacker’s	 actions	 accurately,	 with	 a	 significant	 increase	 in	
detection	accuracy	and	a	reduction	in	the	success	rate	of	the	attacks.	The	study	
further	evaluated	the	model’s	performance	using	the	HIKARI	network	intrusion	
dataset.	The	results	show	that	the	proposed	model	maintained	its	performance	
across	both	datasets,	with	an	observed	improvement	of	0.002721	accuracy	and	
0.002701	in	cross-validation	metrics,	respectively.	

The	 model’s	 improved	 performance	 can	 be	 attributed	 to	 its	 ability	 to	
generalize	effectively	across	various	datasets,	likely	due	to	robust	preprocessing	
techniques	that	handle	data	 inconsistencies,	such	as	 imbalanced	data,	missing	
values,	 or	 noise.	 Addi-	 tionally,	 the	 observed	 improvements	 in	 accuracy	 and	
cross-validation	metrics	suggest	that	the	model	is	well-optimized	through	fine-
tuned	 hyperparameters	 and	 an	 architec-	 ture	 designed	 to	 adapt	 to	 diverse	
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patterns	 in	 the	data.	The	 iterative	 training	process	also	plays	a	 role,	ensuring	
convergence	to	a	high-performing	solution	with	minimal	overfitting.	

Including	 the	 Bayesian	 update	 mechanism	 significantly	 improved	 the	
robustness	of	the	interaction	between	the	defender	and	the	attacker,	leading	to	
more	adaptive	and	resilient	defense	strategies.	These	findings	have	significant	
implications	 for	 the	 development	 of	 cyber	 defense	 schemes,	 particularly	 in	
industries	 where	 Mobile	 Edge	 Computing	 is	 prominent,	 such	 as	
telecommunications	and	autonomous	systems.	How-	ever,	 the	study	assumes	a	
single	 attacker	and	 focuses	on	 relatively	 low-uncertainty	environments.	There	
is	a	need	to	explore	more	complex	scenarios,	such	as	more	attackers	and	higher	
uncertainty	 levels.	 Further	 investigations	 on	 integrating	 resource	 constraints	
and	 network	 dynamics	 can	 be	 helpful	 in	 improving	 the	 applicability	 of	 the	
proposed	approach.	
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• RAN	-	Radio	Access	Network	
• RSSI	-	Received	Signal	Strength	Indicator	
• SVM	 -	 Support	Vector	Machine	
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